Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Induced Transitions in Second and Fourth Grandjean Zones
3.2. Simulation of Orientation Transitions and Discussion
- Induced orientation transition in the first Grandjean zone
- b.
- Induced orientation transition in the second Grandjean zone
- c.
- Induced orientation transition in the third and fourth Grandjean zones
- d.
- Dynamics of induced transitions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK, 1993; ISBN 9780198517856. [Google Scholar]
- Oseen, C.W. The theory of liquid crystals. J. Chem. Soc. Faraday Trans. 1933, 29, 883–899. [Google Scholar] [CrossRef]
- Stebryte, M. Reflective optical components based on chiral liquid crystal for head-up displays. Liq. Crystals Today 2021, 30, 36–45. [Google Scholar] [CrossRef]
- Nam, S.; Wang, D.; Lee, G.; Choi, S.S. Broadband wavelength tuning of electrically stretchable chiral photonic gel. Nanophotonics 2022, 11, 2139–2148. [Google Scholar] [CrossRef]
- Wang, D.; Nam, S.; Jung, W.; Yang, H.J.; Choi, S.S. Electrically wavelength-controllable color filters with high optical transmittance using heterogeneous chiral liquid crystals. Adv. Opt. Mater. 2023, 11, 2202906. [Google Scholar] [CrossRef]
- Mysliwiec, J.; Szukalska, A.; Szukalski, A.; Sznitko, L. Liquid crystal lasers: The last decade and the future. Nanophotonics 2021, 10, 2309–2346. [Google Scholar] [CrossRef]
- Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photon. 2010, 4, 676–685. [Google Scholar] [CrossRef]
- Papič, M.; Mur, U.; Zuhail, K.P.; Ravnik, M.; Muševič, I.; Humar, M. Topological liquid crystal superstructures as structured light lasers. Proc. Nat. Acad. Sci. USA 2021, 118, e2110839118. [Google Scholar] [CrossRef]
- Ortega, J.; Folcia, C.L.; Etxebarria, J. Laser emission at the second-order photonic band gap in an electric-field-distorted cholesteric liquid crystal. Liq. Cryst. 2019, 46, 2159–2166. [Google Scholar] [CrossRef]
- Folcia, C.L.; Ortega, J.; Sierra, T.; Martínez-Bueno, A.; Etxebarria, J. Chiral ferroelectric nematic liquid crystals as materials for versatile laser devices. Giant 2024, 19, 100316. [Google Scholar] [CrossRef]
- Dadalyan, T.; Ninoyan, Z.; Nys, I.; Alaverdyan, R.; Beeckman, J.; Neyts, K. Light-induced multi-wavelength lasing in dye-doped chiral nematic liquid crystals due to strong pumping illumination. Liq. Cryst. 2018, 45, 1272–1278. [Google Scholar] [CrossRef]
- Sarukhanyan, T.M.; Gharagulyan, H.; Rafayelyan, M.S.; Golik, S.S.; Gevorgyan, A.H.; Alaverdyan, R.B. Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric. Molecules 2021, 26, 6089. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Yoshida, H.; Inoue, K.; Fujii, A.; Ozaki, M. Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment. Appl. Phys. Express 2010, 3, 102702. [Google Scholar] [CrossRef]
- Carbone, G.; Salter, P.; Elston, S.J.; Raynes, P.; De Sio, L.; Ferjani, S.; Strangi, G.; Umeton, C.; Bartolino, R. Short pitch cholesteric electro-optical device based on periodic polymer structures. Appl. Phys. Lett. 2009, 95, 011102. [Google Scholar] [CrossRef]
- Palto, S.P.; Shtykov, N.M.; Kasyanova, I.V.; Umanskii, B.A.; Geivandov, A.R.; Rybakov, D.O.; Simdyankin, I.V.; Artemov, V.V.; Gorkunov, M.V. Deformed lying helix transition and lasing effect in cholesteric LC layers at spatially periodic boundary conditions. Liq. Cryst. 2020, 47, 384–398. [Google Scholar] [CrossRef]
- Komitov, L.; Bryan-Brown, G.P.; Wood, E.L.; Smout, A.B.J. Alignment of cholesteric liquid crystals using periodic anchoring. J. Appl. Phys. 1999, 86, 3508–3511. [Google Scholar] [CrossRef]
- Carbone, G.; Corbett, D.; Elston, S.J.; Raynes, P.; Jesacher, A.; Simmonds, R.; Booth, M. Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography. Mol. Cryst. Liq. Cryst. 2011, 544, 37–49. [Google Scholar] [CrossRef]
- Yip, W.C.; Welch, C.; Mehl, G.H.; Wilkinson, T.D. A cholesteric liquid crystal device having stable uniform lying helix structure. J. Mol. Liq. 2020, 299, 112141. [Google Scholar] [CrossRef]
- Yu, C.H.; Wu, P.C.; Lee, W. Polymer Stabilization of Uniform Lying Helix Texture in a Bimesogen-Doped Cholesteric Liquid Crystal for Frequency-Modulated Electro-Optic Responses. Materials 2022, 15, 771. [Google Scholar] [CrossRef]
- Kim, S.H.; Shi, L.; Chien, L.C. Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network. J. Phys. D Appl. Phys. 2009, 42, 195102. [Google Scholar] [CrossRef]
- Jia, Z.; Pawale, T.; Guerrero-García, G.I.; Hashemi, S.; Martínez-González, J.A.; Li, X. Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystals: From Morphology Transition to Dimension Control. Crystals 2021, 11, 414. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Bisoyi, H.K.; Bunning, T.J.; Li, Q. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures. Adv. Mater. 2018, 30, 1706512. [Google Scholar] [CrossRef] [PubMed]
- Salter, P.S.; Carbone, G.; Jewell, S.A.; Elston, S.J.; Raynes, P. Unwinding of the uniform lying helix structure in cholesteric liquid crystals next to a spatially uniform aligning surface. Phys. Rev. E 2009, 80, 041707. [Google Scholar] [CrossRef]
- Geivandov, A.R.; Simdyankin, I.V.; Barma, D.D.; Shtykov, N.M.; Palto, S.P. High-quality deformed lying helix in chiral LC on surface with periodic alignment prepared by two-step optical treatment. Liq. Cryst. 2022, 49, 2027–2036. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I.; Geivandov, A.R.; Kasyanova, I.V.; Palto, V.S. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals. Phys. Rev. E 2015, 92, 032502. [Google Scholar] [CrossRef] [PubMed]
- Simdyankin, I.V.; Geivandov, A.R.; Barnik, M.I.; Palto, V.S.; Palto, S.P. Selective reflection zones of cholesteric liquid crystals induced in a non-uniform spatially periodic electric field. Liq. Cryst. Its Pract. Use 2019, 19, 48–56. (In Russian) [Google Scholar] [CrossRef]
- Rumi, M.; Tondiglia, V.P.; Natarajan, L.V.; White, T.J.; Bunning, T.J. Non-Uniform Helix Unwinding of Cholesteric Liquid Crystals in Cells with Interdigitated Electrodes. ChemPhysChem 2014, 15, 1311–1322. [Google Scholar] [CrossRef]
- Jewell, S.A.; Sambles, J.R. Optical imaging of the effect of in-plane fields on cholesteric liquid crystals. Phys. Rev. E 2008, 78, 012701. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Morris, S.M.; Castles, F.; Qasim, M.M.; Kim, W.-S.; Choi, S.S.; Park, H.J.; Chung, I.J.; Coles, H.J. Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices. Appl. Phys. Lett. 2011, 98, 263508. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Morris, S.M.; Hands, P.J.W.; Castles, F.; Qasim, M.M.; Kim, W.-S.; Choi, S.S.; Wilkinson, T.D.; Coles, H.J. Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect. Appl. Phys. Lett. 2012, 100, 063501. [Google Scholar] [CrossRef]
- Joshi, V.; Chang, K.H.; Paterson, D.A.; Storey, J. P-151: Fast Flexoelectro-optic Response of Bimesogen-doped Polymer Stabilized Cholesteric Liquid Crystals in Vertical Standing Helix Mode. SID Symp. Dig. Tech. Pap. 2017, 48, 1849–1852. [Google Scholar] [CrossRef]
- Choi, S.S.; Castles, F.; Morris, S.M.; Coles, H.J. High contrast chiral nematic liquid crystal device using negative dielectric material. Appl. Phys. Lett. 2009, 95, 193502. [Google Scholar] [CrossRef]
- Umanskii, B.A.; Simdyankin, I.V. Circular dichroism in cholesteric liquid crystals. Crystall. Rep. 2019, 64, 437–442. [Google Scholar] [CrossRef]
- Berreman, D.W.; Heffner, W.R. New bistable cholesteric liquid-crystal display. Appl. Phys. Lett. 1980, 37, 109–111. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I. Bistable switching in chiral nematic liquid crystal layers with a 2π-twist ground state. J. Expert. Theor. Phys. 2005, 100, 199–207. [Google Scholar] [CrossRef]
- Palto, S.P. On mechanisms of the helix pitch variation in a thin cholesteric layer confined between two surfaces. J. Expert. Theor. Phys. 2002, 94, 260–269. [Google Scholar] [CrossRef]
- Palto, S.P.; Rybakov, D.O.; Umanskii, B.A.; Shtykov, N.M. Spiral Pitch Control in Cholesteric Liquid Crystal Layers with Hybrid Boundary Conditions. Crystals 2022, 13, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simdyankin, I.V.; Geivandov, A.R.; Kasyanova, I.V.; Palto, S.P. Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals 2024, 14, 891. https://doi.org/10.3390/cryst14100891
Simdyankin IV, Geivandov AR, Kasyanova IV, Palto SP. Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals. 2024; 14(10):891. https://doi.org/10.3390/cryst14100891
Chicago/Turabian StyleSimdyankin, Ivan V., Artur R. Geivandov, Irina V. Kasyanova, and Serguei P. Palto. 2024. "Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal" Crystals 14, no. 10: 891. https://doi.org/10.3390/cryst14100891
APA StyleSimdyankin, I. V., Geivandov, A. R., Kasyanova, I. V., & Palto, S. P. (2024). Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals, 14(10), 891. https://doi.org/10.3390/cryst14100891