Machine Learning to Predict Workability and Compressive Strength of Low- and High-Calcium Fly Ash–Based Geopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design
2.3. Test Methods
2.3.1. Workability Test
2.3.2. Compressive Strength Test
2.3.3. Characterization Techniques
3. Machine-Learning Algorithms
3.1. Multilayer Perceptron Regressor (MLP)
3.2. Voting Regressor (VR)
3.3. Extreme Gradient Boosting (XGB)
4. Data Processing
4.1. Database Description
4.2. Evaluation Criteria
5. Results and Discussion
5.1. Workability Test
5.2. Compressive Strength
5.3. Characterization Techniques
5.3.1. XRD Analysis
5.3.2. FTIR Analysis
5.3.3. SEM Analysis
5.4. Performance Evaluation of Various Models
5.4.1. Workability Prediction
5.4.2. Compressive Strength Prediction
5.5. Feature Importance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fly Ash (g) | CaO (%) | Na2O (%) | SiO2 (%) | Fine Aggregate (g) | Molarity | NaOH (g) | WG (g) | Added Water (g) | Curing Temp (°C) | fc (MPa) | Workability (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 315 | 315 | 0 | 80 | 62.67 | 13.50 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 315 | 315 | 0 | 80 | 62.63 | 13.50 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 315 | 315 | 0 | 80 | 62.71 | 13.50 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 8 | 210 | 420 | 0 | 80 | 54.50 | 14 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 8 | 210 | 420 | 0 | 80 | 54.48 | 14 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 8 | 210 | 420 | 0 | 80 | 54.52 | 14 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 0 | 80 | 80.00 | 14.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 0 | 80 | 79.96 | 14.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 0 | 80 | 80.04 | 14.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 0 | 80 | 59.98 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 0 | 80 | 59.96 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 0 | 80 | 60.00 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 0 | 80 | 53.03 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 0 | 80 | 53.02 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 0 | 80 | 53.04 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 210 | 420 | 0 | 80 | 61.80 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 210 | 420 | 0 | 80 | 61.76 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 210 | 420 | 0 | 80 | 61.84 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 210 | 420 | 37.8 | 80 | 64.70 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 210 | 420 | 37.8 | 80 | 64.69 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 2268 | 12 | 210 | 420 | 37.8 | 80 | 64.71 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 37.8 | 80 | 64.80 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 37.8 | 80 | 64.76 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 37.8 | 80 | 64.84 | 16 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 37.8 | 80 | 52.10 | 17 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 37.8 | 80 | 52.08 | 17 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 37.8 | 80 | 52.12 | 17 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 0 | 80 | 73.60 | 17.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 0 | 80 | 73.62 | 17.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 0 | 80 | 73.64 | 17.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 37.8 | 80 | 66.05 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 37.8 | 80 | 66.04 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 37.8 | 80 | 66.06 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 75.6 | 80 | 57.20 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 75.6 | 80 | 57.24 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 210 | 420 | 75.6 | 80 | 57.16 | 18 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 37.8 | 80 | 63.25 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 37.8 | 80 | 63.30 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 37.8 | 80 | 63.20 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 75.6 | 80 | 52.70 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 75.6 | 80 | 52.80 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 75.6 | 80 | 52.60 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 0 | 80 | 63.40 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 0 | 80 | 63.60 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 0 | 80 | 63.20 | 18.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 37.8 | 80 | 44.00 | 19 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 37.8 | 80 | 44.04 | 19 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 37.8 | 80 | 43.96 | 19 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 315 | 315 | 0 | 80 | 63.20 | 20.50 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 315 | 315 | 0 | 80 | 63.18 | 20.50 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 12 | 315 | 315 | 0 | 80 | 63.22 | 20.50 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 8 | 315 | 315 | 0 | 80 | 55.75 | 21 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 8 | 315 | 315 | 0 | 80 | 55.90 | 21 |
1260 | 6.00 | 1.41 | 52.30 | 1512 | 8 | 315 | 315 | 0 | 80 | 55.60 | 21 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 113.4 | 80 | 46.87 | 21.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 113.4 | 80 | 46.86 | 21.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 113.4 | 80 | 46.88 | 21.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 113.4 | 80 | 55.66 | 22 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 113.4 | 80 | 55.60 | 22 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 210 | 420 | 113.4 | 80 | 55.72 | 22 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 75.6 | 80 | 42.20 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 75.6 | 80 | 42.10 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 75.6 | 80 | 42.30 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 75.6 | 80 | 52.47 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 75.6 | 80 | 52.48 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 16 | 315 | 315 | 75.6 | 80 | 52.46 | 22.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 75.6 | 80 | 47.98 | 23 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 75.6 | 80 | 48.00 | 23 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 210 | 420 | 75.6 | 80 | 47.96 | 23 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 126 | 80 | 33.90 | 24.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 126 | 80 | 33.80 | 24.50 |
1260 | 6.00 | 1.41 | 52.30 | 1890 | 8 | 315 | 315 | 126 | 80 | 34.00 | 24.50 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 25 | 25.00 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 25 | 25.10 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 25 | 24.90 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 25 | 38.00 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 25 | 38.04 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 25 | 37.96 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 25 | 32.00 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 25 | 31.98 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 25 | 32.02 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 80 | 26.00 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 80 | 26.01 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 8 | 56.67 | 113.33 | 0 | 80 | 25.99 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 80 | 52.00 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 80 | 52.02 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 80 | 51.98 | 21 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 80 | 45.00 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 80 | 45.20 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 16 | 56.67 | 113.33 | 0 | 80 | 44.80 | 16 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 10 | 45.00 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 10 | 45.10 | 24 |
330 | 6.00 | 1.41 | 52.30 | 500 | 12 | 56.67 | 113.33 | 0 | 10 | 44.90 | 24 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 105 | 210 | 0 | 80 | 41.97 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 105 | 210 | 0 | 80 | 41.96 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 105 | 210 | 0 | 80 | 41.98 | 10 |
630 | 15.85 | 0.93 | 40.18 | 756 | 12 | 105 | 210 | 0 | 80 | 41.17 | 9 |
630 | 15.85 | 0.93 | 40.18 | 756 | 12 | 105 | 210 | 0 | 80 | 41.16 | 9 |
630 | 15.85 | 0.93 | 40.18 | 756 | 12 | 105 | 210 | 0 | 80 | 41.18 | 9 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 8 | 105 | 210 | 0 | 80 | 36.72 | 10 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 8 | 105 | 210 | 0 | 80 | 36.72 | 10 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 8 | 105 | 210 | 0 | 80 | 36.72 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 0 | 80 | 25.90 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 0 | 80 | 25.80 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 0 | 80 | 26.00 | 10 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 157.5 | 157.5 | 0 | 80 | 32.32 | 10 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 157.5 | 157.5 | 0 | 80 | 32.36 | 10 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 157.5 | 157.5 | 0 | 80 | 32.28 | 10 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 157.5 | 157.5 | 0 | 80 | 44.73 | 10 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 157.5 | 157.5 | 0 | 80 | 44.72 | 10 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 157.5 | 157.5 | 0 | 80 | 44.74 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 0 | 80 | 42.40 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 0 | 80 | 42.36 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 0 | 80 | 42.44 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 18.9 | 80 | 46.20 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 18.9 | 80 | 46.10 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 18.9 | 80 | 46.30 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 18.9 | 80 | 61.45 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 18.9 | 80 | 61.46 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 18.9 | 80 | 61.44 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 37.8 | 80 | 21.72 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 37.8 | 80 | 21.76 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 37.8 | 80 | 21.68 | 10 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 37.8 | 80 | 30.51 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 37.8 | 80 | 30.50 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 37.8 | 80 | 30.52 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 63 | 80 | 44.67 | 10.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 63 | 80 | 44.68 | 10.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 157.5 | 157.5 | 63 | 80 | 44.66 | 10.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 18.9 | 80 | 35.72 | 11.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 18.9 | 80 | 35.76 | 11.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 18.9 | 80 | 35.68 | 11.50 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 105 | 210 | 0 | 80 | 50.33 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 105 | 210 | 0 | 80 | 50.32 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 8 | 105 | 210 | 0 | 80 | 50.34 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 105 | 210 | 0 | 80 | 47.50 | 11 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 105 | 210 | 0 | 80 | 47.52 | 11 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 105 | 210 | 0 | 80 | 47.48 | 11 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 63 | 80 | 53.90 | 13 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 63 | 80 | 53.80 | 13 |
630 | 15.85 | 0.93 | 40.18 | 945 | 12 | 157.5 | 157.5 | 63 | 80 | 54.00 | 13 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 63 | 80 | 30.38 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 63 | 80 | 30.36 | 12 |
630 | 15.85 | 0.93 | 40.18 | 945 | 16 | 157.5 | 157.5 | 63 | 80 | 30.40 | 12 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 105 | 210 | 0 | 80 | 32.12 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 105 | 210 | 0 | 80 | 32.08 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 756 | 8 | 105 | 210 | 0 | 80 | 32.16 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 756 | 16 | 105 | 210 | 0 | 80 | 33.15 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 756 | 16 | 105 | 210 | 0 | 80 | 33.16 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 756 | 16 | 105 | 210 | 0 | 80 | 33.14 | 13.50 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 105 | 210 | 0 | 80 | 42.15 | 15 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 105 | 210 | 0 | 80 | 42.10 | 15 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 12 | 105 | 210 | 0 | 80 | 42.20 | 15 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 16 | 105 | 210 | 0 | 80 | 41.73 | 13 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 16 | 105 | 210 | 0 | 80 | 41.74 | 13 |
630 | 15.85 | 0.93 | 40.18 | 1134 | 16 | 105 | 210 | 0 | 80 | 41.72 | 13 |
References
- Ansari, M.A.; Shariq, M.; Mahdi, F. Geopolymer concrete for clean and sustainable construction—A state-of-the-art review on the mix design approaches. Structures 2023, 55, 1045–1070. [Google Scholar] [CrossRef]
- Jamieson, E.; McLellan, B.; van Riessen, A.; Nikraz, H. Comparison of embodied energies of Ordinary Portland Cement with Bayer-derived geopolymer products. J. Clean. Prod. 2015, 99, 112–118. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud. Univ. Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Bhatt, A.; Priyadarshini, S.; Acharath Mohanakrishnan, A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- ASTM C618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- Turan, C.; Javadi, A.A.; Vinai, R. Effects of Class C and Class F Fly Ash on Mechanical and Microstructural Behavior of Clay Soil-A Comparative Study. Materals 2022, 15, 1845. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ahmad, W.; Ahmad, A.; Aslam, F.; Mohamed, A.; Vatin, N.I. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites. Polymers 2022, 14, 1074. [Google Scholar] [CrossRef] [PubMed]
- Nazar, S.; Yang, J.; Amin, M.N.; Khan, K.; Ashraf, M.; Aslam, F.; Javed, M.F.; Eldin, S.M. Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer. J. Mater. Res. Technol. 2023, 24, 100–124. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Chen, B.; Zahid, M.; Ahmad, M.R. Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Constr. Build. Mater. 2022, 360, 129534. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Javed, M.F.; Aslam, F.; Qadir, M.G.; Faraz, M.I. Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Materials 2022, 15, 3478. [Google Scholar] [CrossRef]
- Huang, B.; Bahrami, A.; Javed, M.F.; Azim, I.; Iqbal, M.A. Evolutionary Algorithms for Strength Prediction of Geopolymer Concrete. Buildings 2024, 14, 1347. [Google Scholar] [CrossRef]
- Harmaji, A.; Sunendar, B. Utilization of Fly Ash, Red Mud, and Electric Arc Furnace Dust Slag for Geopolymer. Mater. Sci. Forum 2016, 841, 157–161. [Google Scholar] [CrossRef]
- ASTM C1437; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- Kilimci, Z.H. Ensemble Regression-Based Gold Price (XAU/USD) Prediction. J. Emerg. Comput. Technol. 2022, 2, 7–12. [Google Scholar]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud. Univ. Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Li, Z.; Lu, T.; He, X.; Montillet, J.-P.; Tao, R. An improved cyclic multi model-eXtreme gradient boosting (CMM-XGBoost) forecasting algorithm on the GNSS vertical time series. Adv. Space Res. 2023, 71, 912–935. [Google Scholar] [CrossRef]
- Chakraborty, D.; Awolusi, I.; Gutierrez, L. An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete. Results Eng. 2021, 11, 100245. [Google Scholar] [CrossRef]
- Chandra, R. Parallel Programming in OpenMP; Morgan Kaufmann: Burlington, MA, USA, 2001. [Google Scholar]
- Shang, M.; Li, H.; Ahmad, A.; Ahmad, W.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Majka, T.M. Predicting the mechanical properties of RCA-based concrete using supervised machine learning algorithms. Materials 2022, 15, 647. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Ostrowski, K.A.; Dudek, M. Analyzing the compressive strength of ceramic waste-based concrete using experiment and artificial neural network (ANN) approach. Materials 2021, 14, 4518. [Google Scholar] [CrossRef]
- Simatupang, P.H.; Imran, I.; Pane, I.; Sunendar, B. On the Development of a Nomogram for Alkali Activated Fly Ash Material (AAFAM) Mixtures. J. Eng. Technol. Sci. 2015, 47, 231–249. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Salem, H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016, 121, 694–703. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Zhu, X.; Jiang, T.; Tufail, R.F. A Comprehensive Study on the Factors Affecting the Workability and Mechanical Properties of Ambient Cured Fly Ash and Slag Based Geopolymer Concrete. Appl. Sci. 2021, 11, 8722. [Google Scholar] [CrossRef]
- Sasui, S.; Kim, G.; Nam, J.; Koyama, T.; Chansomsak, S. Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in NaOH & NaOH + Na(2)SiO(3). Materials 2019, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; de Lima, L.M.; Li, Z.; Ma, B.; Lothenbach, B.; Yin, S.; Yu, Q.; Ye, G. Synthesis, solubility and thermodynamic properties of N-A-S-H gels with various target Si/Al ratios. Cem. Concr. Res. 2024, 180, 107484. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, M. Structure, Reactivity, and Mechanical Properties of Sustainable Geopolymer Material: A Reactive Molecular Dynamics Study. Front. Mater. 2020, 7. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors Affecting the Compressive Strength of Geopolymers: A Review. Minerals 2021, 11, 1317. [Google Scholar] [CrossRef]
- Bernal, S. The resistance of alkali-activated cement-based binders to carbonation. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Sawston, UK, 2015; pp. 319–332. [Google Scholar]
- Morandeau, A.; Thiery, M.; Dangla, P. Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef]
- Ye, H.; Cai, R.; Tian, Z. Natural carbonation-induced phase and molecular evolution of alkali-activated slag: Effect of activator composition and curing temperature. Constr. Build. Mater. 2020, 248, 118726. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Kozhukhova, M.; Zhernovskaya, I.; Promakhov, V. The Correlation of Temperature-Mineral Phase Transformation as a Controlling Factor of Thermal and Mechanical Performance of Fly Ash-Based Alkali-Activated Binders. Materials 2020, 13, 5181. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J. Mater. Sci. 2016, 51, 10301–10317. [Google Scholar] [CrossRef]
- Tchadjié, L.N.; Djobo, J.N.Y.; Ranjbar, N.; Tchakouté, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram. Int. 2016, 42, 3046–3055. [Google Scholar] [CrossRef]
- Onutai, S.; Osugi, T.; Sone, T. Alumino-Silicate Structural Formation during Alkali-Activation of Metakaolin: In-Situ and Ex-Situ ATR-FTIR Studies. Materials 2023, 16, 985. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Huang, L.; Li, Y.; Chen, Z. Preparation of geopolymers from thermally activated lithium slag as sole precursor: Mechanical properties and microstructure. Case Stud. Constr. Mater. 2024, 20, e03248. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Koleżyński, A.; Mozgawa, W. Vibrational Spectra of Zeolite Y as a Function of Ion Exchange. Molecules 2021, 26, 342. [Google Scholar] [CrossRef]
- Ritz, M. Infrared and Raman Spectroscopy of Mullite Ceramics Synthesized from Fly Ash and Kaolin. Minerals 2023, 13, 864. [Google Scholar] [CrossRef]
- Mishra, J.; Nanda, B.; Patro, S.K.; Krishna, R.S. Sustainable Fly Ash Based Geopolymer Binders: A Review on Compressive Strength and Microstructure Properties. Sustainability 2022, 14, 15062. [Google Scholar] [CrossRef]
- Yazid, M.H.; Faris, M.A.; Abdullah, M.; Ibrahim, M.S.I.; Razak, R.A.; Burduhos Nergis, D.D.; Burduhos Nergis, D.P.; Benjeddou, O.; Nguyen, K.S. Mechanical Properties of Fly Ash-Based Geopolymer Concrete Incorporation Nylon66 Fiber. Materials 2022, 15, 9050. [Google Scholar] [CrossRef]
- Beltrame, N.A.M.; Dias, R.L.; Witzke, F.B.; Medeiros-Junior, R.A. Effect of carbonation curing on the physical, mechanical, and microstructural properties of metakaolin-based geopolymer concrete. Constr. Build. Mater. 2023, 406, 133403. [Google Scholar] [CrossRef]
- Sun, Z.; Vollpracht, A. One year geopolymerisation of sodium silicate activated fly ash and metakaolin geopolymers. Cem. Concr. Compos. 2019, 95, 98–110. [Google Scholar] [CrossRef]
- Longhi, M.A.; Rodríguez, E.D.; Walkley, B.; Zhang, Z.; Kirchheim, A.P. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Compos. Part B Eng. 2020, 182, 107671. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z. Carbonation induced phase evolution in alkali-activated slag/fly ash cements: The effect of silicate modulus of activators. Constr. Build. Mater. 2019, 223, 566–582. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Z.; Peng, S.; Liu, J.; Wu, Q.; Xu, X. State-of-the-art review of geopolymer concrete carbonation: From impact analysis to model establishment. Case Stud. Constr. Mater. 2024, 20, e03124. [Google Scholar] [CrossRef]
- Ollivier, J.P.; Maso, J.C.; Bourdette, B. Interfacial transition zone in concrete. Adv. Cem. Based Mater. 1995, 2, 30–38. [Google Scholar] [CrossRef]
- Alanazi, H. Study of the Interfacial Transition Zone Characteristics of Geopolymer and Conventional Concretes. Gels 2022, 8, 105. [Google Scholar] [CrossRef]
- Luo, Z.; Li, W.; Wang, K.; Castel, A.; Shah, S.P. Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Cem. Concr. Res. 2021, 143, 106392. [Google Scholar] [CrossRef]
- Pelalak, R.; Nakhjiri, A.T.; Marjani, A.; Rezakazemi, M.; Shirazian, S. Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors. Sci. Rep. 2021, 11, 1891. [Google Scholar] [CrossRef]
- Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials 2021, 14, 4222. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Rashad, A.M.; Gharieb, M. Solving the perpetual problem of imperative use heat curing for fly ash geopolymer cement by using sugar beet waste. Constr. Build. Mater. 2021, 307, 124902. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, W.; Chaiyasarn, K.; Ostrowski, K.A.; Aslam, F.; Zajdel, P.; Joyklad, P. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Polymers 2021, 13, 3389. [Google Scholar] [CrossRef]
- Safhi, A.e.M.; Dabiri, H.; Soliman, A.; Khayat, K.H. Prediction of self-consolidating concrete properties using XGBoost machine learning algorithm: Part 1—Workability. Constr. Build. Mater. 2023, 408, 133560. [Google Scholar] [CrossRef]
- Ahmed, A.; Song, W.; Zhang, Y.; Haque, M.A.; Liu, X. Hybrid BO-XGBoost and BO-RF Models for the Strength Prediction of Self-Compacting Mortars with Parametric Analysis. Materials 2023, 16, 4366. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.J.; Thanka, M.R.; Edwin, E.B.; Ebenezer, V.; Joy, P. Multi-Model Supervised Machine Learning Techniques for Heart Stroke Prediction. In Proceedings of the 2024 International Conference on Expert Clouds and Applications (ICOECA), Bengaluru, India, 18–19 April 2024; pp. 661–665. [Google Scholar]
- Deng, S.; Huang, X.; Zhu, Y.; Su, Z.; Fu, Z.; Shimada, T. Stock index direction forecasting using an explainable eXtreme Gradient Boosting and investor sentiments. N. Am. J. Econ. Financ. 2023, 64, 101848. [Google Scholar] [CrossRef]
- Shao, G. Stock price prediction based on multifactorial linear models and machine learning approaches. In Proceedings of the 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, China, 11–12 December 2022; pp. 319–324. [Google Scholar]
Oxides | Fly Ash F | Fly Ash C |
---|---|---|
SiO2 | 52.30 | 40.18 |
Al2O3 | 26.57 | 17.32 |
Fe2O3 | 7.28 | 14.11 |
CaO | 6.00 | 15.85 |
Na2O | 1.41 | 0.93 |
SO3 | 0.70 | 0.80 |
K2O | 0.73 | 1.48 |
MgO | 2.13 | 6.89 |
LOI | 1.18 | 0.86 |
Variable Parameter | Fly Ash (g) | CaO (%) | Na2O (%) | SiO2 (%) | Fine Aggregate (g) | NaOH Molarity | NaOH (g) | Na2SiO3 (g) | Added Water (g) | Curing Temp. (°C) |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 880.38 | 9.98 | 1.22 | 47.41 | 1321.25 | 11.62 | 183.30 | 257.56 | 24.59 | 75.78 |
Median | 630 | 6.00 | 1.41 | 52.30 | 1134 | 12 | 157.5 | 210 | 0 | 80 |
Mode | 1260 | 6.00 | 1.41 | 52.30 | 1890 | 12 | 315 | 315 | 0 | 80 |
Standard deviation | 367.71 | 4.88 | 0.24 | 6.00 | 570.53 | 3.19 | 87.68 | 112.23 | 35.18 | 14.75 |
Input range | 300 | 9.85 | 0.48 | 12.12 | 1768 | 8 | 258.33 | 306.67 | 113.4 | 60 |
Lower limit | 330 | 6.00 | 0.93 | 40.18 | 500 | 8 | 56.67 | 113.33 | 0 | 20 |
Upper limit | 630 | 15.85 | 1.41 | 52.30 | 2268 | 16 | 315 | 420 | 113.4 | 80 |
Raw Material | Bending Si–O–Si O–Si–O (cm−1) | Vibration Si–O–Al (cm−1) | Stretching Si–O–Si Si–O–Al (cm−1) | Stretching O–C–O (cm−1) | Bending H–O–H (cm−1) | Stretching –OH (cm−1) |
---|---|---|---|---|---|---|
Class C fly ash | 464.84 | 578.64 777.31 | 1010.70 1024.20 | 1429.50 | 1641.42 | 3448.72 |
Class F fly ash | 462.92 | 578.64 777.31 | 1018.41 1080.14 | – | 1637.56 | 3448.72 |
Machine-Learning Methods | MAE (cm) | MSE (cm) | R2 |
---|---|---|---|
MLP | 1.87 | 4.81 | 0.78 |
VR | 1.31 | 2.39 | 0.89 |
XGB | 0.06 | 0.007 | 0.96 |
Machine-Learning Methods | MAE (MPa) | MSE (MPa) | R2 |
---|---|---|---|
MLP | 7.20 | 87.37 | 0.54 |
VR | 5.23 | 47.43 | 0.75 |
XGB | 2.45 | 19.57 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmaji, A.; Kirana, M.C.; Jafari, R. Machine Learning to Predict Workability and Compressive Strength of Low- and High-Calcium Fly Ash–Based Geopolymers. Crystals 2024, 14, 830. https://doi.org/10.3390/cryst14100830
Harmaji A, Kirana MC, Jafari R. Machine Learning to Predict Workability and Compressive Strength of Low- and High-Calcium Fly Ash–Based Geopolymers. Crystals. 2024; 14(10):830. https://doi.org/10.3390/cryst14100830
Chicago/Turabian StyleHarmaji, Andrie, Mira Chandra Kirana, and Reza Jafari. 2024. "Machine Learning to Predict Workability and Compressive Strength of Low- and High-Calcium Fly Ash–Based Geopolymers" Crystals 14, no. 10: 830. https://doi.org/10.3390/cryst14100830
APA StyleHarmaji, A., Kirana, M. C., & Jafari, R. (2024). Machine Learning to Predict Workability and Compressive Strength of Low- and High-Calcium Fly Ash–Based Geopolymers. Crystals, 14(10), 830. https://doi.org/10.3390/cryst14100830