Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells
Abstract
1. Introduction
2. Sample Structure and Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Amano, H.; Collazo, R.; Santi, C.D.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R.; et al. The 2020 UV emitter roadmap. J. Phys. D Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Li, J.; Gao, N.; Cai, D.; Lin, W.; Huang, K.; Li, S.; Kang, J. Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes. Light Sci. Appl. 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ben, J.; Xu, F.; Li, J.; Chen, Y.; Sun, X.; Li, D. Review on the Progress of AlGaN-based Ultraviolet Light-Emitting Diodes. Fundam. Res. 2021, 1, 717–734. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2018, 216, 1800628. [Google Scholar] [CrossRef]
- Dinh, D.V.; Alam, S.N.; Parbrook, P.J. Effect of V/III ratio on the growth of (11-22) AlGaN by metalorganic vapour phase epitaxy. J. Cryst. Growth 2016, 435, 12–18. [Google Scholar] [CrossRef]
- Akaike, R.; Ichikawa, S.; Funato, M.; Kawakami, Y. AlxGa1−xN-based semipolar deep ultraviolet light-emitting diodes. Appl. Phys. Express 2018, 11, 061001. [Google Scholar] [CrossRef]
- Li, Z.; Jiu, L.; Gong, Y.; Wang, L.; Zhang, Y.; Bai, J.; Wang, T. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: Simultaneous management of crystal quality improvement and cracking issue. Appl. Phys. Lett. 2017, 110, 082103. [Google Scholar] [CrossRef]
- Chen, L.; Lin, W.; Chen, H.; Xu, H.; Guo, C.; Liu, Z.; Yan, J.; Sun, J.; Liu, H.; Wu, J.; et al. Annihilation and Regeneration of Defects in (11-22) Semipolar AlN via High-Temperature Annealing and MOVPE Regrowth. Cryst. Growth Des. 2021, 21, 2911–2919. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth 2019, 507, 307–309. [Google Scholar] [CrossRef]
- Jo, M.; Morishita, N.; Okada, N.; Itokazu, Y.; Kamata, N.; Tadatomo, K.; Hirayama, H. Impact of thermal treatment on the growth of semipolar AlN on m-plane sapphire. AIP Adv. 2018, 8, 105312. [Google Scholar] [CrossRef]
- Xing, K.; Cheng, X.; Wang, L.; Chen, S.; Zhang, Y.; Liang, H. Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing. J. Cryst. Growth 2021, 570, 126207. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J.; Guo, W.; Hoo, J.; Lin, W.; Chen, H.; Xu, H.; Yan, L.; Guo, S.; Kang, J.; et al. Multi-step in situ interface modification method for emission enhancement in semipolar deep-ultraviolet light emitting diodes. Photonics Res. 2022, 10, 2778. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Martin, R.W.; Middleton, P.G. Origin of Luminescence from InGaN Diodes. Phys. Rev. Lett. 1999, 82, 237–240. [Google Scholar] [CrossRef]
- Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett. 1997, 70, 2822–2824. [Google Scholar] [CrossRef]
- Watson-Parris, D.; Godfrey, M.J.; Dawson, P.; Oliver, R.A.; Galtrey, M.J.; Kappers, M.J.; Humphreys, C.J. Carrier localization mechanisms in InxGa1−xN/GaN quantum wells. Phys. Rev. B 2011, 83, 115321. [Google Scholar] [CrossRef]
- Davidson, J.A.; Dawson, P.; Wang, T.; Sugahara, T.; Orton, J.W.; Sakai, S. Photoluminescence studies of InGaN/GaN multi-quantum wells. Semicond. Sci. Technol. 2000, 15, 497–505. [Google Scholar] [CrossRef]
- Karpov, S.Y. Carrier localization in InGaN by composition fluctuations: Implication to the “green gap”. Photonics Res. 2017, 5, A7–A12. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Z.; Qu, S.; Wang, G.; Jiang, Y.; Liu, B.; Xu, X.; Mino, H. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt. Express 2012, 20, 3932–3940. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Gainer, G.H.; Fischer, A.J.; Song, J.J.; Keller, S.; Mishra, U.K.; DenBaars, S.P. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 73, 1370–1372. [Google Scholar] [CrossRef]
- Nepal, N.; Li, J.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. Exciton localization in AlGaN alloys. Appl. Phys. Lett. 2006, 88, 062103. [Google Scholar] [CrossRef]
- Mickevicius, J.; Jurkevicius, J.; Tamulaitis, G.; Shur, M.S.; Shatalov, M.; Yang, J.; Gaska, R. Influence of carrier localization on high-carrier-density effects in AlGaN quantum wells. Opt. Express 2014, 22 (Suppl. 2), A491–A497. [Google Scholar] [CrossRef]
- Kazlauskas, K.; Žukauskas, A.; Tamulaitis, G.; Mickevičius, J.; Shur, M.S.; Fareed, R.S.Q.; Zhang, J.P.; Gaska, R. Exciton hopping and nonradiative decay in AlGaN epilayers. Appl. Phys. Lett. 2005, 87, 172102. [Google Scholar] [CrossRef]
- Frankerl, C.; Nippert, F.; Hoffmann, M.P.; Wang, H.; Brandl, C.; Lugauer, H.-J.; Zeisel, R.; Hoffmann, A.; Davies, M.J. Strongly localized carriers in Al-rich AlGaN/AlN single quantum wells grown on sapphire substrates. J. Appl. Phys. 2020, 127, 095701. [Google Scholar] [CrossRef]
- Kim, H.S.; Mair, R.A.; Li, J.; Lin, J.Y.; Jiang, H.X. Time-resolved photoluminescence studies of AlxGa1−xN alloys. Appl. Phys. Lett. 2000, 76, 1252–1254. [Google Scholar] [CrossRef]
- Monavarian, M.; Rosales, D.; Gil, B.; Izyumskaya, N.; Das, S.; Özgür, Ü.; Morkoç, H.; Avrutin, V. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells. In Proceedings of the Volume 9748, Gallium Nitride Materials and Devices XI, San Francisco, CA, USA, 13–18 February 2016; p. 9748. [Google Scholar] [CrossRef]
- Dinh, D.V.; Presa, S.; Maaskant, P.P.; Corbett, B.; Parbrook, P.J. Exciton localization in polar and semipolar (11-22) In0.2Ga0.8N/GaN multiple quantum wells. Semicond. Sci. Technol. 2016, 31, 08500. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, R.M.; Hou, Y.; Xu, B.; Gong, Y.; Bai, J.; Wang, T. Stokes shift in semi-polar (11-22) InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2016, 108, 031108. [Google Scholar] [CrossRef]
- Schomig, H.; Halm, S.; Forchel, A.; Bacher, G.; Off, J.; Scholz, F. Probing individual localization centers in an InGaN/GaN quantum well. Phys. Rev. Lett. 2004, 92, 106802. [Google Scholar] [CrossRef]
- De, S.; Layek, A.; Raja, A.; Kadir, A.; Gokhale, M.R.; Bhattacharya, A.; Dhar, S.; Chowdhury, A. Two Distinct Origins of Highly Localized Luminescent Centers within InGaN/GaN Quantum-Well Light-Emitting Diodes. Adv. Funct. Mater. 2011, 21, 3828–3835. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605. [Google Scholar] [CrossRef]
- Oto, T.; Banal, R.G.; Kataoka, K.; Funato, M.; Kawakami, Y. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat. Photonics 2010, 4, 767–770. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Li, D.; Liu, N.; Li, L.; Cao, W.; Yang, W.; Wan, C.; Chen, W.; Du, W.; et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures. J. Appl. Phys. 2011, 109, 073106. [Google Scholar] [CrossRef]
- Hwang, J.S.; Gokarna, A.; Cho, Y.-H.; Son, J.K.; Lee, S.N.; Sakong, T.; Paek, H.S.; Nam, O.H.; Park, Y. Direct comparison of optical characteristics of InGaN-based laser diode structures grown on pendeo epitaxial GaN and sapphire substrates. Appl. Phys. Lett. 2007, 90, 131908. [Google Scholar] [CrossRef]
- Monroy, E.; Gogneau, N.; Enjalbert, F.; Fossard, F.; Jalabert, D.; Bellet-Amalric, E.; Dang, L.S.; Daudin, B. Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds. J. Appl. Phys. 2003, 94, 3121–3127. [Google Scholar] [CrossRef]
- Li, J.; Nam, K.B.; Lin, J.Y.; Jiang, H.X. Optical and electrical properties of Al-rich AlGaN alloys. Appl. Phys. Lett. 2001, 79, 3245–3247. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yang, W.; Jhe, W. Dynamics of anomalous optical transitions in AlxGa1-xN alloys. Phys. Rev. B 2000, 61, 7203–7206. [Google Scholar] [CrossRef]
- Lu, T.; Ma, Z.; Du, C.; Fang, Y.; Wu, H.; Jiang, Y.; Wang, L.; Dai, L.; Jia, H.; Liu, W.; et al. Temperature-dependent photoluminescence in light-emitting diodes. Sci. Rep. 2014, 4, 6131. [Google Scholar] [CrossRef] [PubMed]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osiński, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Holly Haggar, J.I.; Ghataora, S.S.; Trinito, V.; Bai, J.; Wang, T. Study of the Luminescence Decay of a Semipolar Green Light-Emitting Diode for Visible Light Communications by Time-Resolved Electroluminescence. ACS Photonics 2022, 9, 2378–2384. [Google Scholar] [CrossRef]
Sample | A | Ea (meV) | B | Eb (meV) |
---|---|---|---|---|
Ex situ HTA | 207.4 | 59.3 | 11.4 | 17.8 |
In situ-treated | 184.9 | 69.4 | 11.9 | 16.8 |
c-plane | 98.2 | 53.2 | 1.1 | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, P.; Liu, K.; Zhang, J.; Chen, Q.; Deng, L.; Yan, L.; Hoo, J.; Guo, S.; Chen, L.; Guo, W.; et al. Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals 2023, 13, 1076. https://doi.org/10.3390/cryst13071076
Ouyang P, Liu K, Zhang J, Chen Q, Deng L, Yan L, Hoo J, Guo S, Chen L, Guo W, et al. Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals. 2023; 13(7):1076. https://doi.org/10.3390/cryst13071076
Chicago/Turabian StyleOuyang, Ping, Kunzi Liu, Jiaxin Zhang, Qiushuang Chen, Liqiong Deng, Long Yan, Jason Hoo, Shiping Guo, Li Chen, Wei Guo, and et al. 2023. "Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells" Crystals 13, no. 7: 1076. https://doi.org/10.3390/cryst13071076
APA StyleOuyang, P., Liu, K., Zhang, J., Chen, Q., Deng, L., Yan, L., Hoo, J., Guo, S., Chen, L., Guo, W., & Ye, J. (2023). Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals, 13(7), 1076. https://doi.org/10.3390/cryst13071076