Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D. Organic Transistors in Optical Displays and Microelectronic Applications. Adv. Mater. 2010, 22, 3778–3798. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Lüssem, B.; Tietze, M.L.; Kleemann, H.; Hoßbach, C.; Bartha, J.W.; Zakhidov, A.; Leo, K. Doped Organic Transistors Operating in the Inversion and Depletion Regime. Nat. Commun. 2013, 4, 2775. [Google Scholar] [CrossRef] [PubMed]
- Himmelberger, S.; Salleo, A. Engineering Semiconducting Polymers for Efficient Charge Transport. MRS Commun. 2015, 5, 383–395. [Google Scholar] [CrossRef]
- Nielsen, C.B.; Turbiez, M.; McCulloch, I. Recent Advances in the Development of Semiconducting DPP-Containing Polymers for Transistor Applications. Adv. Mater. 2013, 25, 1859–1880. [Google Scholar] [CrossRef]
- Stalder, R.; Mei, J.; Graham, K.R.; Estrada, L.A.; Reynolds, J.R. Isoindigo, a Versatile Electron-Deficient Unit for High-Performance Organic Electronics. Chem. Mater. 2014, 26, 664–678. [Google Scholar] [CrossRef]
- Kiefer, D.; Giovannitti, A.; Sun, H.; Biskup, T.; Hofmann, A.; Koopmans, M.; Cendra, C.; Weber, S.; Anton Koster, L.J.; Olsson, E.; et al. Enhanced N-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Lett. 2018, 3, 278–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Chien, S.C.; Chen, K.S.; Yip, H.L.; Sun, Y.; Davies, J.A.; Chen, F.C.; Jen, A.K.Y. Increased Open Circuit Voltage in Fluorinated Benzothiadiazole-Based Alternating Conjugated Polymers. Chem. Commun. 2011, 47, 11026–11028. [Google Scholar] [CrossRef]
- Nikolka, M.; Hurhangee, M.; Sadhanala, A.; Chen, H.; McCulloch, I.; Sirringhaus, H. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers. Adv. Electron. Mater. 2018, 4, 1700410. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Di Pietro, R.; Huang, J.; Noh, Y.Y.; Liu, X.; Minari, T. Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors. Phys. Rev. Appl. 2017, 8, 034020. [Google Scholar] [CrossRef]
- Waldrip, M.; Jurchescu, O.D.; Gundlach, D.J.; Bittle, E.G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 1904576. [Google Scholar] [CrossRef]
- Bittle, E.G.; Basham, J.I.; Jackson, T.N.; Jurchescu, O.D.; Gundlach, D.J. Mobility Overestimation Due to Gated Contacts in Organic Field-Effect Transistors. Nat. Commun. 2016, 7, 10908. [Google Scholar] [CrossRef]
- Pesavento, P.V.; Chesterfield, R.J.; Newman, C.R.; Frisble, C.D. Gated Four-Probe Measurements on Pentacene Thin-Film Transistors: Contact Resistance as a Function of Gate Voltage and Temperature. J. Appl. Phys. 2004, 96, 7312–7324. [Google Scholar] [CrossRef]
- Baier, S.M.; Shur, M.S.; Lee, K.; Cirillo, N.C.; Hanka, S.A. FET Characterization Using Gated-TLM Structure. IEEE Trans. Electron Devices 1985, 32, 2824–2829. [Google Scholar] [CrossRef]
- Ghibaudo, G. New Method for the Extraction of MOSFET Parameters. Electron. Lett. 1988, 24, 543–545. [Google Scholar] [CrossRef]
- Natali, D.; Caironi, M. Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods. Adv. Mater. 2012, 24, 1357–1387. [Google Scholar] [CrossRef]
- Natali, D.; Fumagalli, L.; Sampietro, M. Modeling of Organic Thin Film Transistors: Effect of Contact Resistances. J. Appl. Phys. 2007, 101, 014501. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Intrinsic Device Parameter Extraction Method for Zinc Oxide-Based Thin-Film Transistors. Appl. Phys. Express 2021, 14, 124003. [Google Scholar] [CrossRef]
- Bubel, S.; Chabinyc, M.L. Model for Determination of Mid-Gap States in Amorphous Metal Oxides from Thin Film Transistors. J. Appl. Phys. 2013, 113, 234507. [Google Scholar] [CrossRef]
- Campbell, A.J.; Rawcliffe, R.; Guite, A.; Faria, J.C.D.; Mukherjee, A.; McLachlan, M.A.; Shkunov, M.; Bradley, D.D.C. Charge-Carrier Density Independent Mobility in Amorphous Fluorene-Triarylamine Copolymers. Adv. Funct. Mater. 2016, 26, 3720–3729. [Google Scholar] [CrossRef]
- Jung, S.; Jin, J.W.; Mosser, V.; Bonnassieux, Y.; Horowitz, G. A Compact Model and Parameter Extraction Method for a Staggered OFET with Power-Law Contact Resistance and Mobility. IEEE Trans. Electron Devices 2019, 66, 4894–4900. [Google Scholar] [CrossRef]
- Stallinga, P. Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory. Adv. Mater. 2011, 23, 3356–3362. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Kim, S.H.; Lee, J.H.; Kim, M.K.; Kim, D.J.; Zyung, T. Surface-Treatment Effects on Organic Thin-Film Transistors. Synth. Met. 2005, 148, 75–79. [Google Scholar] [CrossRef]
- Pei, K.; Chen, M.; Zhou, Z.; Li, H.; Chan, P.K.L. Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents. ACS Appl. Electron. Mater. 2019, 1, 379–388. [Google Scholar] [CrossRef]
- Grant, A.J.; Davis, E.A. The Fermi Energy EF Is Sufficiently Re- Moved From. Semiconductors 1974, 15, 563–566. [Google Scholar]
- Majumdar, S.; Banerji, P. Hopping Conduction in Nitrogen Doped ZnO in the Temperature Range 10-300 K. J. Appl. Phys. 2010, 107, 063702. [Google Scholar] [CrossRef]
- Olivier, Y.; Lemaur, V.; Brédas, J.L.; Cornil, J. Charge Hopping in Organic Semiconductors: Influence of Molecular Parameters on Macroscopic Mobilities in Model One-Dimensional Stacks. J. Phys. Chem. A 2006, 110, 6356–6364. [Google Scholar] [CrossRef]
- Liu, C.; Huang, K.; Park, W.T.; Li, M.; Yang, T.; Liu, X.; Liang, L.; Minari, T.; Noh, Y.Y. A Unified Understanding of Charge Transport in Organic Semiconductors: The Importance of Attenuated Delocalization for the Carriers. Mater. Horizons 2017, 4, 608–618. [Google Scholar] [CrossRef]
- Saito, S.I.; Torii, K.; Shimamoto, Y.; Tonomura, O.; Hisamoto, D.; Onai, T.; Hiratani, M.; Kimura, S.; Manabe, Y.; Caymax, M.; et al. Remote-Charge-Scattering Limited Mobility in Field-Effect Transistors with SiO2 and Al2O3 SiO2 Gate Stacks. J. Appl. Phys. 2005, 98, 113706. [Google Scholar] [CrossRef]
- Ma, N.; Jena, D. Charge Scattering and Mobility in Atomically Thin Semiconductors. Phys. Rev. X 2014, 4, 011043. [Google Scholar] [CrossRef]
- Lee, S.; Li, F.M.; Nathan, A. Influence of Surface Energy and Roughness on Hole Mobility in Solution-Processed Hybrid Organic Thin Film Transistors. IEEE J. Electron Devices Soc. 2018, 6, 653–657. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, M.; Lee, J. Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method. Polymers 2022, 14, 2. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, J.; Guo, Y.; Han, G.; Yi, Y. Regulation of Molecular Orientations of A–D–A Nonfullerene Acceptors for Organic Photovoltaics: The Role of End-Group π–π Stacking. Adv. Funct. Mater. 2022, 32, 2108551. [Google Scholar] [CrossRef]
Semiconductors | Extraction Methods | μ (cm2 V−1) | Power Law Exponent | Rc at −40 V (Ω cm) |
---|---|---|---|---|
HMDS-treated PBTTT | Trans. method | 0.009 | Not available | Not available |
Four-probe method | 0.010 | Not available | 8.9 × 105 | |
Ids/gm method | 0.015 | 0.59 | 3.2 × 106 | |
Y-function method | 0.017 | Not available | 2.1 × 106 | |
HMDS-treated DPP-DTT | Trans. method | 0.023 | Not available | Not available |
Four-probe method | 0.029 | Not available | 1.6 × 106 | |
Ids/gm method | 0.028 | 0. 68 | 1.2 × 106 | |
OTS-treated DPP-DTT | Ids/gm method | 0.351 | 0.18 | 4.8 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, M. Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals 2023, 13, 1075. https://doi.org/10.3390/cryst13071075
Yoon M. Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals. 2023; 13(7):1075. https://doi.org/10.3390/cryst13071075
Chicago/Turabian StyleYoon, Minho. 2023. "Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction" Crystals 13, no. 7: 1075. https://doi.org/10.3390/cryst13071075
APA StyleYoon, M. (2023). Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals, 13(7), 1075. https://doi.org/10.3390/cryst13071075