pH-Dependent Crystallization of 2-, 4-, 5-, and 6-Hydroxynicotinic Acids in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Esteves, C.V. Hydroxynicotinic Acid Crystallisation and Solubility Systematic Studies. New J. Chem. 2022, 46, 21124–21135. [Google Scholar] [CrossRef]
- Voges, M.; Prikhodko, I.V.; Prill, S.; Hübner, M.; Sadowski, G.; Held, C. Influence of pH Value and Ionic Liquids on the Solubility of L-Alanine and L-Glutamic Acid in Aqueous Solutions at 30 °C. J. Chem. Eng. Data 2017, 62, 52–61. [Google Scholar] [CrossRef]
- Fuchs, D.; Fischer, J.; Tumakaka, F.; Sadowski, G. Solubility of Amino Acids: Influence of the pH Value and the Addition of Alcoholic Cosolvents on Aqueous Solubility. Ind. Eng. Chem. Res. 2006, 45, 6578–6584. [Google Scholar] [CrossRef]
- Daldrup, J.-B.G.; Held, C.; Sadowski, G.; Schembecker, G. Modeling pH and Solubilities in Aqueous Multisolute Amino Acid Solutions. Ind. Eng. Chem. Res. 2011, 50, 3503–3509. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, C.; Liu, B.; Zhang, J. Determination and Correlation of Solubility of Cephradine and Cefprozil Monohydrate in Water as a Function of pH. J. Chem. Eng. Data 2017, 62, 3423–3430. [Google Scholar] [CrossRef]
- Repin, I.A.; Loebenberg, R.; DiBella, J.; Conceição, A.C.L.; Minas da Piedade, M.E.; Ferraz, H.G.; Issa, M.G.; Bou-Chacra, N.A.; Ermida, C.F.M.; de Araujo, G.L.B. Exploratory Study on Lercanidipine Hydrochloride Polymorphism: pH-Dependent Solubility Behavior and Simulation of its Impact on Pharmacokinetics. AAPS PharmSciTech 2021, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Watkins, T.W.; Dupre, S.; Coucher, J.R. Ropivacaine and dexamethasone: A Potentially Dangerous Combination for Therapeutic Pain Injections. J. Med. Imaging Radiat. Oncol. 2015, 59, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.C.; Figueira, R.M.; Piedade, M.F.M.; Diogo, H.P.; Minas da Piedade, M.E. Energetics and Structure of Hydroxynicotinic Acids. Crystal Structures of 2-, 4-, 6-Hydroxynicotinic and 5-Chloro-6-Hydroxynicotinic Acids. J. Phys. Chem. B 2009, 113, 14291–14309. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, V.B.; Tapparo, A.; Dolmella, A.; Bombi, G.G. Complexation of 2-Hydroxynicotinic and 3-Hydroxypicolinic Acids with Zinc(II). Solution State Study and Crystal Structure of trans-Diaqua-bis-(3-Hydroxypicolinato) Zinc(II). Inorg. Chim. Acta 2004, 357, 135–142. [Google Scholar] [CrossRef]
- Matias, E.P.; Bernardes, C.E.S.; Piedade, M.F.M.; Minas da Piedade, M.E. A Robust Yet Metastable New Hemihydrate of 4-Hydroxynicotinic Acid. Cryst. Growth Des. 2011, 11, 2803–2810. [Google Scholar] [CrossRef]
- Long, S.H.; Zhang, M.T.; Zhou, P.P.; Yu, F.Q.; Parkin, S.; Li, T.L. Tautomeric Polymorphism of 4-Hydroxynicotinic Acid. Cryst. Growth Des. 2016, 16, 2573–2580. [Google Scholar] [CrossRef]
- Ross, W.C. The Preparation of Some 4-Substituted Nicotinic Acids and Nicotinamides. J. Chem. Soc. Perkin Trans. 1 1966, 20, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Alves, J.S.R.; Bernardes, C.E.S.; Piedade, M.F.M.; Minas da Piedade, M.E. Tautomer Selection through Solvate Formation: The Case of 5-Hydroxynicotinic Acid. CrystEngComm 2019, 21, 2220–2233. [Google Scholar] [CrossRef]
- Lezina, V.P.; Stepanyants, A.U.; Golovkina, N.I.; Smirnov, L.D. Investigation of the Acid-Base Transformations in 3-Hydroxypyridine, 3-Hydroxypyridine N-Oxide, and β-Hydroxypyridinecarboxylic Acids by the NMR Method. Bull. Acad. Sci. USSR Div. Chem. Sci. 1980, 29, 85–92. [Google Scholar] [CrossRef]
- Roduit, J.-P. 6-Hydroxynicotinic Acid. In Encyclopedia of Reagents for Organic Synthesis; Wiley: Hoboken, NJ, USA, 2001; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/047084289X.rh062 (accessed on 1 June 2023).
- Long, S.; Siegler, M.; Li, T. 2-Oxo-1,2-Dihydropyridine-3-Carboxylic Acid. Acta Cryst. 2006, 62, O5664–O5665. [Google Scholar] [CrossRef]
- Djurdjevic, S.; Leigh, D.; Parsons, S. CCDC 660787: Experimental Crystal Structure Determination. 2008. Available online: https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=CCDC%20660787&DatabaseToSearch=Published (accessed on 1 June 2023).
- Kukovec, B.-M.; Popović, Z.; Pavlović, G.; Linarić, M.R. Synthesis and Structure of Cobalt(II) Complexes with Hydroxyl Derivatives of Pyridinecarboxylic Acids: Conformation Analysis of Ligands in the Solid State. J. Mol. Struct. 2008, 882, 47–55. [Google Scholar] [CrossRef]
- Miklovič, J.; Segľa, P.; Mikloš, D.; Titiš, J.; Herchel, R.; Melník, M. CCDC 670679: Experimental Crystal Structure Determination. 2010. Available online: https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=CCDC%20670679&DatabaseToSearch=Published (accessed on 1 June 2023).
- Miklovič, J.; Segľa, P.; Mikloš, D.; Titiš, J.; Herchel, R.; Melník, M. Copper(II) and Cobalt(II) Hydroxypyridinecarboxylates: Synthesis, Crystal structures, Spectral and Magnetic Properties. Chem. Papers 2008, 62, 464–471. [Google Scholar] [CrossRef]
- Long, S.H.; Zhou, P.P.; Theiss, K.L.; Siegler, M.A.; Li, T.L. Solid-State Identity of 2-Hydroxynicotinic Acid and Its Polymorphism. CrystEngComm 2015, 17, 5195–5205. [Google Scholar] [CrossRef]
Compound | pH Range | Dominant Species |
---|---|---|
2HNA | ~0–1.5 | LH3+ |
1.5–6.3 | LH2 | |
6.3–9.6 | LH− | |
9.6–12 | L2− | |
4HNA | ~0–6.2 | LH2 |
6.2–10.8 | LH− | |
10.8–12 | L2− | |
5HNA | ~0–1.9 | LH3+ |
1.9–4.7 | LH2 | |
4.7–8.6 | LH− | |
8.6–12 | L2− | |
6HNA | ~0–3.8 | LH2 |
3.8–10.8 | LH− | |
10.8–12 | L2− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.V.; Piedade, M.F.M.; Esteves, C.V. pH-Dependent Crystallization of 2-, 4-, 5-, and 6-Hydroxynicotinic Acids in Aqueous Media. Crystals 2023, 13, 1062. https://doi.org/10.3390/cryst13071062
Johnson AV, Piedade MFM, Esteves CV. pH-Dependent Crystallization of 2-, 4-, 5-, and 6-Hydroxynicotinic Acids in Aqueous Media. Crystals. 2023; 13(7):1062. https://doi.org/10.3390/cryst13071062
Chicago/Turabian StyleJohnson, Aidan V., M. Fátima M. Piedade, and Catarina V. Esteves. 2023. "pH-Dependent Crystallization of 2-, 4-, 5-, and 6-Hydroxynicotinic Acids in Aqueous Media" Crystals 13, no. 7: 1062. https://doi.org/10.3390/cryst13071062
APA StyleJohnson, A. V., Piedade, M. F. M., & Esteves, C. V. (2023). pH-Dependent Crystallization of 2-, 4-, 5-, and 6-Hydroxynicotinic Acids in Aqueous Media. Crystals, 13(7), 1062. https://doi.org/10.3390/cryst13071062