Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields
Abstract
1. Introduction
2. Background Theory
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, C.; Jagadish, C. Nanoscale Semiconductor Lasers, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Verma, V.B.; Elarde, V.C. Nanoscale selective area epitaxy: From semiconductor lasers to single-photon sources. Prog. Quantum. Electron. 2021, 75, 100305. [Google Scholar] [CrossRef]
- Zhou, C.; Pina, J.M.; Zhu, T.; Parmar, D.H.; Chang, H.; Yu, J.; Yuan, F.; Bappi, G.; Hou, Y.; Zheng, X.; et al. Quantum dot self-assembly enables low-threshold lasing. Adv. Sci. 2021, 8, 2101125. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.S.; Jang, J.; Hong, K.-H.; Lee, D.-K.; Song, S.; Kim, K.; Eo, Y.-J.; Yun, J.H.; Gwak, J.; et al. Robust nanoscale contact of silver nanowire electrodes to semiconductors to achieve high performance chalcogenide thin film solar cells. Nano Energy 2018, 53, 675–682. [Google Scholar] [CrossRef]
- Swarnkar, A.; Marshall, A.R.; Sanehira, E.M.; Chernomordik, B.D.; Moore, D.T.; Christians, J.A.; Chakrabarti, T.; Luther, J.M. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.; Ispasoiu, R. Quantum wells, superlattices, and band-gap engineering. In Springer Handbook of Electronic and Photonic Materials; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Wu, J.; Fang, G.; Zhang, Y.; Biswas, N.; Ji, N.; Xu, W.; Dong, B.; Liu, N. Semiconductor nanomaterial-based polarized light emission: From materials to light emitting diodes. Sci. China Mater. 2023, 66, 1257–1282. [Google Scholar] [CrossRef]
- Kim, S.H.; Man, M.T.; Lee, J.W.; Park, K.D.; Lee, H.S. Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials 2020, 10, 1589. [Google Scholar] [CrossRef]
- Torres-Gomez, N.; Garcia-Gutierrez, D.F.; Lara-Canche, A.R.; Triana-Cruz, L.; Arizpe-Zapata, J.A.; Garcia-Gutierrez, D.I. Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine. J. Alloys Compd. 2021, 860, 158443. [Google Scholar] [CrossRef]
- Heyn, C.; Strelow, C.; Hansen, W. Excitonic lifetimes in single GaAs quantum dots fabricated by local droplet etching. New J. Phys. 2012, 14, 053004. [Google Scholar] [CrossRef]
- Geuchies, J.J.; Brynjarsson, B.; Grimaldi, G.; Gudjonsdottir, S.; van der Stam, W.; Evers, W.H.; Houtepen, A.J. Quantitative electrochemical control over optical gain in quantum-dot solids. ACS Nano 2021, 15, 377–386. [Google Scholar] [CrossRef]
- Bisschop, S.; Geiregat, P.; Aubert, T.; Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 2018, 12, 9011–9021. [Google Scholar] [CrossRef]
- Wu, K.; Park, Y.S.; Lim, J.; Klimov, V.I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.M.; Song, Z.G. Exciton radiative lifetime in CdSe quantum dots. J. Semicond. 2023, 44, 032702. [Google Scholar] [CrossRef]
- Goupalov, V.; Ivchenko, E.L.; Nestoklon, M.O. Optical transitions, exciton radiative decay, and valley coherence in lead chalcogenide quantum dots. Phys. Rev. B 2022, 106, 125301. [Google Scholar] [CrossRef]
- Naimi, Y. Comment on “Magnetic field effects on oscillator strength, dipole polarizability and refractive index changes in spherical quantum dot”. Phys. Lett. 2021, 767, 138380. [Google Scholar] [CrossRef]
- Makhlouf, D.; Choubani, M.; Saidi, F.; Maaref, H. Enhancement of transition lifetime, linear and nonlinear optical properties in laterally coupled lens-shaped quantum dots for Tera-Hertz range. Physica E 2018, 103, 87–92. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Park, Y.S.; Ahn, N.; Lim, J.; Fedin, I.; Livache, C.; Klimov, V.I. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm-1. Nat. Commun. 2022, 13, 3734. [Google Scholar] [CrossRef]
- Taghipour, N.; Delikanli, S.; Shendre, S.; Sak, M.; Li, M.; Isik, F.; Tanriover, I.; Guzelturk, B.; Sum, T.C.; Demir, H.V. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nat. Commun. 2020, 11, 3305. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Kaledin, A.L.; He, S.; Jin, T.; McBride, J.R.; Lian, T. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chem. Sci. 2020, 11, 5779–5789. [Google Scholar] [CrossRef]
- Yilmaz, S.; Safak, H. Oscillator strengths for the intersubband transitions in a CdS-SiO2 quantum dot with hydrogenic impurity. Physica E 2007, 36, 40–44. [Google Scholar] [CrossRef]
- Stobbe, S.; Schlereth, T.W.; Höfling, S.; Forchel, A.; Hvam, J.M.; Lodahl, P. Large quantum dots with small oscillator strength. Phys. Rev. B 2010, 82, 233302. [Google Scholar] [CrossRef]
- Liu, Y.; Bose, S.; Fan, W. Effect of size and shape on electronic and optical properties of CdSe quantum dots. Optik 2018, 155, 242–250. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Z.; Zhang, D.; Sun, H.; Fan, W. Effect of size on the electronic structure and optical properties of cubic CsPbBr3 quantum dots. IEEE J. Quantum Electron. 2020, 56, 1–7. [Google Scholar] [CrossRef]
- Li, Q.; Lian, T. A model for optical gain in colloidal nanoplatelets. Chem. Sci. 2018, 9, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R.H.; Peng, X.; Jin, Y. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, H.; Zhang, Q.; Feng, J.; Zhang, J.; Li, Y.; Ning, C.Z. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition. Light Sci. Appl. 2020, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Stachurski, J.; Tamariz, S.; Callsen, G.; Butté, R.; Grandjean, N. Single photon emission and recombination dynamics in self-assembled GaN/AlN quantum dots. Light Sci. Appl. 2022, 11, 114. [Google Scholar] [CrossRef]
- Bleyan, Y.Y.; Mantashyan, P.A.; Kazaryan, E.M.; Sarkisyan, H.A.; Accorsi, G.; Baskoutas, S.; Hayrapetyan, D.B. Non-linear optical properties of biexciton in ellipsoidal quantum dot. Nanomaterials 2022, 12, 1412. [Google Scholar] [CrossRef]
- Barjon, J. Luminescence spectroscopy of bound excitons in diamond. Phys. Status Solidi A 2017, 214, 1700402. [Google Scholar] [CrossRef]
- Große, J.; Mrowiński, P.; Srocka, N.; Reitzenstein, S. Quantum efficiency and oscillator strength of InGaAs quantum dots for single-photon sources emitting in the telecommunication O-band. Appl. Phys. Lett. 2021, 119, 061103. [Google Scholar] [CrossRef]
- Aghoutane, N.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; El Haouari, M. Optical absorption of excitons in strained quasi 2D GaN quantum dot. Phys. Status Solidi B 2019, 256, 1800361. [Google Scholar] [CrossRef]
- Aghoutane, N.; Pérez, L.M.; Tiutiunnyk, A.; Laroze, D.; Baskoutas, S.; Dujardin, F.; El Fatimy, A.; El-Yadri, M.; Feddi, E. Adjustment of terahertz properties assigned to the first lowest transition of (D+, X) excitonic complex in a single spherical quantum dot using temperature and pressure. Appl. Sci. 2021, 11, 5969. [Google Scholar] [CrossRef]
- Kumar, D.; Negi, C.M.S.; Kumar, J. Temperature effect on optical gain of CdSe/ZnSe quantum dots. In Advances in Optical Science and Engineering; Springer Proceedings in Physics; Springer: New Delhi, India, 2015; Volume 163, pp. 563–569. [Google Scholar]
- Geiregat, P.; Rodá, C.; Tanghe, I.; Singh, S.; Di Giacomo, A.; Lebrun, D.; Grimaldi, G.; Maes, J.; Van Thourhout, D.; Moreels, I.; et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light Sci. Appl. 2021, 10, 5969. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mandelis, A.; Melnikov, A.; Hoogland, S.; Sargent, E.H. Exciton lifetime broadening and distribution profiles of PbS colloidal quantum dot thin films using frequency- and temperature-scanned photocarrier radiometry. J. Phys. Chem. C 2013, 117, 23333–23348. [Google Scholar] [CrossRef]
- Patra, S.K.; Wang, T.; Puchtler, T.J.; Zhu, T.; Oliver, R.A.; Taylor, R.A.; Schulz, S. Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Phys. Status Solidi B 2017, 254, 1600675. [Google Scholar] [CrossRef]
- Alén, B.; Bosch, J.; Granados, D.; Martínez-Pastor, J.; García, J.M.; González, L. Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings. Phys. Rev. B 2007, 75, 045319. [Google Scholar] [CrossRef]
- Makhlouf, D.; Choubani, M.; Saidi, F.; Maaref, H. Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shel quantum dot. Mater. Chem. Phys. 2021, 267, 124660. [Google Scholar] [CrossRef]
- Niculescu, E.C.; Eseanu, N.; Spandonide, A. Laser field effects on the interband transitions in differently shaped quantum wells. UPB Sci. Bull. Ser. A 2008, 77, 281–292. [Google Scholar]
- Owji, E.; Keshavarz, A.; Mokhtari, H. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity. Superlattice Microst. 2016, 98, 276–282. [Google Scholar] [CrossRef]
- Saravanamoorthy, S.N.; Peter, A.J.; Lee, C.W. Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications. Chem. Phys. 2017, 483-484, 1–6. [Google Scholar] [CrossRef]
- Burileanu, L.M. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. J. Lumin. 2014, 145, 684–689. [Google Scholar] [CrossRef]
- Ehlotzky, F. Positronium decay in intense high frequency laser fields. Phys. Lett. A 1988, 126, 524–527. [Google Scholar] [CrossRef]
- Davies, J.H. The Physics of Low-Dimensional Semiconductors: An Introduction; Cambridge University Press: London, UK, 1996. [Google Scholar]
- Alén, B.; Bickel, F.; Karrai, K.; Warburton, R.J.; Petroff, P.M. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 2003, 83, 2235. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of photonic devices. In Physics of Photonic Devices; Wiley: Hoboken, NJ, USA, 2009; pp. 365–372. [Google Scholar]
- Sugawara, M.; Mukai, K.; Nakata, Y.; Ishikawa, H.; Sakamoto, A. Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers. Phys. Rev. B 2000, 61, 7595–7603. [Google Scholar] [CrossRef]
- Sakamoto, A.; Sugawara, M. Theoretical calculation of lasing spectra of quantum-dot lasers: Effect of homogeneous broadening of optical gain. IEEE Photonics Technol. Lett. 2000, 12, 107–109. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders: Philadelphia, PA, USA, 1976. [Google Scholar]
- Stier, O.; Grundmann, M.; Bimberg, D. Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phys. Rev. B 1999, 59, 5688. [Google Scholar] [CrossRef]
- Warburton, R.J.; Gauer, C.; Wixforth, A.; Kotthaus, J.P. Intersubband resonances in InAs/AlSb quantum wells: Selection rules, matrix elements, and the depolarization field. Phys. Rev. B 1996, 53, 7903. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, W.; Guo, G.C.; He, L. Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots. Appl. Phys. Lett. 2011, 99, 231106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghoutane, N.; Pérez, L.M.; Laroze, D.; Díaz, P.; Rivas, M.; El-Yadri, M.; Feddi, E.M. Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals 2023, 13, 851. https://doi.org/10.3390/cryst13050851
Aghoutane N, Pérez LM, Laroze D, Díaz P, Rivas M, El-Yadri M, Feddi EM. Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals. 2023; 13(5):851. https://doi.org/10.3390/cryst13050851
Chicago/Turabian StyleAghoutane, Noreddine, Laura M. Pérez, David Laroze, Pablo Díaz, Miguel Rivas, Mohamed El-Yadri, and El Mustapha Feddi. 2023. "Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields" Crystals 13, no. 5: 851. https://doi.org/10.3390/cryst13050851
APA StyleAghoutane, N., Pérez, L. M., Laroze, D., Díaz, P., Rivas, M., El-Yadri, M., & Feddi, E. M. (2023). Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals, 13(5), 851. https://doi.org/10.3390/cryst13050851