Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Purification and Crystallization
2.2. Data Collection and Processing, Structure Solution and Refinement
2.3. Structure Prediction
2.4. Molecular Dynamics Simulations
2.5. Steered Molecular Dynamics Simulations
3. Results
3.1. CAR Extracellular Construct
3.2. scFv Linkers and Oligomerization through Domain Swapping
3.3. Predicted scFv Dimers in Domain-Swapped or Strand-Swapped Forms
3.4. The Observed VL-VL Homodimer Interface
3.5. The Modeled vs. the Observed VL-VL Homodimer Interface: Binding Affinities
3.6. Hypothetical Models of Canonical and Inverted VL-VL Dimers of scFvs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Bevan, M.J. CD8+ T cells: Foot soldiers of the immune system. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 2009, 21, 233–240. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Rosenberg, S.A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 2013, 10, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Brudno, J.N.; Lam, N.; Vanasse, D.; Shen, Y.-w.; Rose, J.J.; Rossi, J.; Xue, A.; Bot, A.; Scholler, N.; Mikkilineni, L.; et al. Safety and feasibility of anti-CD19 CAR T cells with fully humanbinding domains in patients with B-cell lymphoma. Nat. Med. 2020, 26, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Fraietta, J.A.; June, C.H.; Xu, Z.; Joseph Melenhorst, J.; Lacey, S.F. Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering 2019, 5, 140–149. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Han, W.; Zhang, Y. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs Today 2017, 53, 597–608. [Google Scholar] [CrossRef]
- Gill, S.; June, C.H. Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 2015, 263, 68–89. [Google Scholar] [CrossRef]
- Kochenderfer, J.N. Chimeric Antigen Receptors Targeting CD-19. US10287350B2, 14 May 2019. [Google Scholar]
- Yong, C.S.M.; Dardalhon, V.; Devaud, C.; Taylor, N.; Darcy, P.K.; Kershaw, M.H. CAR T-cell therapy of solid tumors. Immunol. Cell Biol. 2017, 95, 356–363. [Google Scholar] [CrossRef]
- Moreno-Cortes, E.; Forero-Forero, J.V.; Lengerke-Diaz, P.A.; Castro, J.E. Chimeric antigen receptor T cell therapy in oncology—Pipeline at a glance: Analysis of the ClinicalTrials.gov database. Crit. Rev. Oncol. Hematol. 2021, 159, 103239. [Google Scholar] [CrossRef]
- Bugge, K.; Lindorff-Larsen, K.; Kragelund, B.B. Understanding single-pass transmembrane receptor signaling from a structural viewpoint-what are we missing? FEBS J. 2016, 283, 4424–4451. [Google Scholar] [CrossRef]
- Backliwal, G.; Hildinger, M.; Hasija, V.; Wurm, F.M. High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol. Bioeng. 2008, 99, 721–727. [Google Scholar] [CrossRef]
- Blommel, P.G.; Fox, B.G. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 2007, 55, 53–68. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzym. 1997, 276, 307–326. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Langer, G.; Cohen, S.X.; Lamzin, V.S.; Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008, 3, 1171–1179. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Bell, D.R. Evolution of Thyroglobulin Loop Kinetics in EpCAM. Life 2021, 11, 915. [Google Scholar] [CrossRef] [PubMed]
- Alabanza, L.; Pegues, M.; Geldres, C.; Shi, V.; Wiltzius, J.J.W.; Sievers, S.A.; Yang, S.; Kochenderfer, J.N. Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 2452–2465. [Google Scholar] [CrossRef]
- King, D.J.; Rao-Naik, C.; Pan, C.; Cardarelli, J.; Blanset, D. Human Antibodies that Bind CD19 and Uses Thereof. US20100104509A1, 29 April 2010. [Google Scholar]
- Whitlow, M.; Bell, B.A.; Feng, S.L.; Filpula, D.; Hardman, K.D.; Hubert, S.L.; Rollence, M.L.; Wood, J.F.; Schott, M.E.; Milenic, D.E.; et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993, 6, 989–995. [Google Scholar] [CrossRef]
- Poljak, R.J. Production and structure of diabodies. Structure 1994, 2, 1121–1123. [Google Scholar] [CrossRef]
- Holliger, P.; Prospero, T.; Winter, G. “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 1993, 90, 6444–6448. [Google Scholar] [CrossRef]
- Le Gall, F.; Reusch, U.; Little, M.; Kipriyanov, S.M. Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng. Des. Sel. 2004, 17, 357–366. [Google Scholar] [CrossRef]
- Singh, N.; Frey, N.V.; Engels, B.; Barrett, D.M.; Shestova, O.; Ravikumar, P.; Shyu, A.; Highfill, S.; Zhao, L.; Peng, L.; et al. Single Chain Variable Fragment Linker Length Regulates CAR Biology and T Cell Efficacy. Blood 2019, 134, 247. [Google Scholar] [CrossRef]
- Singh, N.; Frey, N.V.; Engels, B.; Barrett, D.M.; Shestova, O.; Ravikumar, P.; Cummins, K.D.; Lee, Y.G.; Pajarillo, R.; Chun, I.; et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 2021, 27, 842–850. [Google Scholar] [CrossRef]
- Xiao, X.; Ho, M.; Zhu, Z.; Pastan, I.; Dimitrov, D.S. Identification and characterization of fully human anti-CD22 monoclonal antibodies. mAbs 2009, 1, 297–303. [Google Scholar] [CrossRef]
- Haso, W.; Lee, D.W.; Shah, N.N.; Stetler-Stevenson, M.; Yuan, C.M.; Pastan, I.H.; Dimitrov, D.S.; Morgan, R.A.; FitzGerald, D.J.; Barrett, D.M.; et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013, 121, 1165–1174. [Google Scholar] [CrossRef]
- Ereño-Orbea, J.; Liu, X.; Sicard, T.; Kucharska, I.; Li, W.; Borovsky, D.; Cui, H.; Feng, Y.; Dimitrov, D.S.; Julien, J.P. Structural details of monoclonal antibody m971 recognition of the membrane-proximal domain of CD22. J. Biol. Chem. 2021, 297, 100966. [Google Scholar] [CrossRef]
- Novotný, J.; Haber, E. Structural invariants of antigen binding: Comparison of immunoglobulin VL-VH and VL-VL domain dimers. Proc. Natl. Acad. Sci. USA 1985, 82, 4592–4596. [Google Scholar] [CrossRef]
- Chothia, C.; Novotný, J.; Bruccoleri, R.; Karplus, M. Domain association in immunoglobulin molecules. The packing of variable domains. J. Mol. Biol. 1985, 186, 651–663. [Google Scholar] [CrossRef]
- Youkharibache, P. Topological and Structural Plasticity of the Single Ig Fold and the Double Ig Fold Present in CD19. Biomolecules 2021, 11, 1290. [Google Scholar] [CrossRef]
- Szent-Gyorgyi, C.; Stanfield, R.L.; Andreko, S.; Dempsey, A.; Ahmed, M.; Capek, S.; Waggoner, A.S.; Wilson, I.A.; Bruchez, M.P. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J. Mol. Biol. 2013, 425, 4595–4613. [Google Scholar] [CrossRef]
- Carmichael, J.A.; Power, B.E.; Garrett, T.P.; Yazaki, P.J.; Shively, J.E.; Raubischek, A.A.; Wu, A.M.; Hudson, P.J. The crystal structure of an anti-CEA scFv diabody assembled from T84.66 scFvs in V(L)-to-V(H) orientation: Implications for diabody flexibility. J. Mol. Biol. 2003, 326, 341–351. [Google Scholar] [CrossRef]
- Epp, O.; Lattman, E.E.; Schiffer, M.; Huber, R.; Palm, W. The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution. Biochemistry 1975, 14, 4943–4952. [Google Scholar] [CrossRef]
- Huang, D.B.; Chang, C.H.; Ainsworth, C.; Brünger, A.T.; Eulitz, M.; Solomon, A.; Stevens, F.J.; Schiffer, M. Comparison of crystal structures of two homologous proteins: Structural origin of altered domain interactions in immunoglobulin light-chain dimers. Biochemistry 1994, 33, 14848–14857. [Google Scholar] [CrossRef] [PubMed]
- Pokkuluri, P.R.; Huang, D.B.; Raffen, R.; Cai, X.; Johnson, G.; Stevens, P.W.; Stevens, F.J.; Schiffer, M. A domain flip as a result of a single amino-acid substitution. Structure 1998, 6, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Peterson, F.C.; Baden, E.M.; Owen, B.A.; Volkman, B.F.; Ramirez-Alvarado, M. A single mutation promotes amyloidogenicity through a highly promiscuous dimer interface. Structure 2010, 18, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci. 2022, 31, e4379. [Google Scholar] [CrossRef] [PubMed]
- Cummins, M.C.; Jacobs, T.M.; Teets, F.D.; DiMaio, F.; Tripathy, A.; Kuhlman, B. AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein. Protein Sci. 2022, 31, e4368. [Google Scholar] [CrossRef]
- Chakravarty, D.; Porter, L.L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 2022, 31, e4353. [Google Scholar] [CrossRef]
- Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E 1997, 56, 5018–5035. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef]
- Zenodo Repository. Available online: https://doi.org/10.5281/zenodo.7809232 (accessed on 19 April 2023). [CrossRef]
- Wang, J.; Youkharibache, P.; Zhang, D.; Lanczycki, C.J.; Geer, R.C.; Madej, T.; Phan, L.; Ward, M.; Lu, S.; Marchler, G.H.; et al. iCn3D, a Web-Based 3D Viewer for Sharing 1D/2D/3D Representations of Biomolecular Structures. Bioinformatics 2020, 36, 131–135. [Google Scholar] [CrossRef]
- Available online: https://zenodo.org/api/records/7809232(accessed on 19 April 2023).
47G4-CD828Z CAR | |
---|---|
Method | Vapor diffusion, sitting drop |
Plate type | Intelli-Plate 96-3 LVR |
Temperature (K) | 295 |
Protein concentration (mg mL−1) | 11 |
Buffer composition of protein solution | 20 mM Tris pH 7.5, 150 mM NaCl |
Composition of reservoir solution | 0.10 M Tris pH 8.5, 1.8 M ammonium sulfate, 6.5% (w/v) PEG 400, 0.2 M magnesium sulfate |
Volume and ratio of drop | 400 nL total, 1:1 ratio |
Volume of reservoir (μL) | 60 |
47G4-CD828Z CAR | |
---|---|
Diffraction source | NSLS II 19-ID |
Wavelength (Å) | 0.979 |
Temperature (K) | 110 |
Detector | ADSC HF-4M |
Crystal-to-detector distance (mm) | 202 |
Rotation range per image (°) | 0.2 |
Total rotation range (°) | 360 |
Exposure time per image (s) | 0.1 |
Space group | C2 |
a, b, c (Å) | 79.3, 79.2, 40.6 |
α, β, γ (°) | 90, 109.6, 90 |
Mosaicity (°) | 0.6 |
Resolution range (Å) | 38.27–1.40 (1.45–1.40) |
Total No. of reflections | 521,969 (44,484) |
No. of unique reflections | 46,404 (4550) |
Completeness (%) | 99.8 (98.2) |
Multiplicity | 11.2 (9.8) |
CC1/2 | 1.0 (0.621) |
Average (I)/σ(I) | 20.2 (1.4) |
Rmerge (%) | 7.1 (126.3) |
Overall B factor from Wilson plot (Å2) | 24.7 |
47G4-CD828Z CAR | |
---|---|
PDB code | 7JO8 |
Resolution range (Å) | 38.3–1.40 |
No. of reflections, working set | 46,442 |
No. of reflections, test set | 2259 |
Final Rcryst | 0.155 |
Final Rfree | 0.171 |
Cruickshank DPI | 0.051 |
No. of non-H atoms | |
Protein | 1770 |
Ligand | 36 |
Water | 215 |
Total | 2021 |
Solvent content (%)/Za | 51.7/2 |
R.m.s. deviations | |
Bonds (Å) | 0.011 |
Angles (°) | 1.28 |
Average B factors (Å2) | 24.7 |
Protein | 23.1 |
Ligand | 42.8 |
Water | 34.7 |
Ramachandran plot | |
Most favoured (%) | 96.71 |
Allowed (%) | 3.29 |
Outliers (%) | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, J.; Wazir, S.; Bell, D.R.; Kochenderfer, J.N.; Hendrickson, W.A.; Youkharibache, P. Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer. Crystals 2023, 13, 710. https://doi.org/10.3390/cryst13040710
Cheung J, Wazir S, Bell DR, Kochenderfer JN, Hendrickson WA, Youkharibache P. Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer. Crystals. 2023; 13(4):710. https://doi.org/10.3390/cryst13040710
Chicago/Turabian StyleCheung, Jonah, Shagun Wazir, David R. Bell, James N. Kochenderfer, Wayne A. Hendrickson, and Philippe Youkharibache. 2023. "Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer" Crystals 13, no. 4: 710. https://doi.org/10.3390/cryst13040710
APA StyleCheung, J., Wazir, S., Bell, D. R., Kochenderfer, J. N., Hendrickson, W. A., & Youkharibache, P. (2023). Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer. Crystals, 13(4), 710. https://doi.org/10.3390/cryst13040710