Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
3. Results
3.1. Effects of Water Content and Precursor Concentration on Crystal Structure of As-Synthesized Powder
3.2. Effect of Synthesis Temperature and Time on the Synthesis of WO3∙0.33(H2O)
3.3. Dehydration of WO3∙0.33(H2O)
- First, WO3∙0.33(H2O) should be synthesized by a solvothermal process. To ensure no other phase is produced, the WCl6 concentration should be as low as 0.01 M, the water content should be between 5–10 vol%, the synthesis temperature should be higher than 180 °C, and the synthesis time should be longer than 9 h;
- Then, in the subsequent annealing process, the WO3∙0.33(H2O) is transformed to h-WO3. In order to stabilize the metastable hexagonal structure, the annealing temperature needs to be carefully controlled between 400 °C and 450 °C.
4. Conclusions
- Parameters of the solvothermal process: WCl6 precursor concentration as low as 0.01 M, water content 5–10 vol%, synthesis temperature higher than 180 °C, synthesis time longer than 9 h;
- Parameters of the subsequent annealing process: annealing temperature between 400 °C and 450 °C.
- (i)
- Higher WCl6 precursor concentration and higher water content in the solvent results in formation of thermostable γ-WO3 with porous squared-sheet morphology. The preferential crystallographic orientation of the γ-WO3 nanosheet is 002 orientation. Precursor concentration of 0.01 M and water content of 5–10 vol% produce pure 002-orientated WO3∙0.33(H2O) hexagonal nanosheets. The urchin-like W18O49 is only present when water is absent from the solvent;
- (ii)
- Synthesis temperature below 180 °C and synthesis time below 6 h might also result in the formation of W18O49 and, therefore, should be avoided. This is attributed to the insufficient reaction caused by low synthesis temperature and short synthesis time;
- (iii)
- Annealing at temperature higher than 400 °C is required to dehydrate the WO3∙0.33(H2O) and produce h-WO3. However, annealing time higher than 500 °C results in a h to γ transition. The dehydration process does not destroy the hexagonal morphology of the particle and, thus, the h-WO3 hexagonal sheet can be produced.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christopher, J.H.; Vittorio, L.; Kevin, S.K. High-temperature phase transitions in tungsten trioxide—The last word? J. Phys. Condens. Matter 2002, 14, 377. [Google Scholar] [CrossRef]
- Han, W.; Shi, Q.; Hu, R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. Nanomaterials 2021, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Gouma, P. Polymorphism in nanocrystalline binary metal oxides. Nanomater. Energy 2013, 2, 82–96. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Madarász, J.; Pokol, G.; Király, P.; Tárkányi, G.; Saukko, S.; Mizsei, J.; Tóth, A.L.; Szabó, A.; Varga-Josepovits, K. Stability and Controlled Composition of Hexagonal WO3. Chem. Mater. 2008, 20, 4116–4125. [Google Scholar] [CrossRef]
- Sun, W.; Yeung, M.T.; Lech, A.T.; Lin, C.W.; Lee, C.; Li, T.; Duan, X.; Zhou, J.; Kaner, R.B. High Surface Area Tunnels in Hexagonal WO3. Nano Lett. 2015, 15, 4834–4838. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D. High Efficient Electrochromic WO3 Nanofibers. Electrochim. Acta 2014, 138, 115–123. [Google Scholar] [CrossRef]
- Balázsi, C.; Sedlácková, K.; Pfeifer, J.; Tóth, A.L.; Zayim, E.O.; Szilágyi, I.M.; Wang, L.; Kalyanasundaram, K.; Gouma, P.-I. Synthesis and Examination of Hexagonal Tungsten Oxide Nanocrystals for Electrochromic and Sensing Applications. In Sensors for Environment, Health and Security: Advanced Materials and Technologies; Springer: Dordrecht, The Netherlands, 2009; pp. 77–91. [Google Scholar]
- Abe, O.O.; Qiu, Z.; Jinschek, J.R.; Gouma, P.-I. Effect of (100) and (001) Hexagonal WO3 Faceting on Isoprene and Acetone Gas Selectivity. Sensors 2021, 21, 1690. [Google Scholar] [CrossRef] [PubMed]
- Gouma, P.I.; Wang, L.; Simon, S.R.; Stanacevic, M. Novel Isoprene Sensor for a Flu Virus Breath Monitor. Sensors 2017, 17, 199. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, Y.; Li, G.; Ma, Z.; Wang, X.; Cheng, Z.; Xu, J. Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sens. Actuators B Chem. 2019, 293, 23–30. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Salama, T.M.; Hegazy, M.A.; Abou Shahba, R.M.; Mohamed, S.H. Synthesis of hexagonal WO3 nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 4724–4736. [Google Scholar] [CrossRef]
- Peng, T.; Ke, D.; Xiao, J.; Wang, L.; Hu, J.; Zan, L. Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. J. Solid State Chem. 2012, 194, 250–256. [Google Scholar] [CrossRef]
- Pang, H.-F.; Xiang, X.; Li, Z.-J.; Fu, Y.-Q.; Zu, X.-T. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys. Status Solidi A 2012, 209, 537–544. [Google Scholar] [CrossRef]
- Zakharova, G.S.; Podval’naya, N.y.V.; Gorbunova, T.y.I.; Pervova, M.G.; Murzakaev, A.M.; Enyashin, A.N. Morphology-controlling hydrothermal synthesis of h-WO3 for photocatalytic degradation of 1,2,4-trichlorobenzene. J. Alloys Compd. 2023, 938, 168620. [Google Scholar] [CrossRef]
- Bhojane, P.; Shirage, P.M. Facile preparation of hexagonal WO3 nanopillars and its reduced graphene oxide nanocomposites for high-performance supercapacitor. J. Energy Storage 2022, 55, 105649. [Google Scholar] [CrossRef]
- Nekita, S.; Nagashima, K.; Zhang, G.; Wang, Q.; Kanai, M.; Takahashi, T.; Hosomi, T.; Nakamura, K.; Okuyama, T.; Yanagida, T. Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules. ACS Appl. Nano Mater. 2020, 3, 10252–10260. [Google Scholar] [CrossRef]
- Ahmadian, H.; Tehrani, F.S.; Aliannezhadi, M. Hydrothermal synthesis and characterization of WO3 nanostructures: Effects of capping agent and pH. Mater. Res. Express 2019, 6, 105024. [Google Scholar] [CrossRef]
- Marques, A.C.; Santos, L.; Costa, M.N.; Dantas, J.M.; Duarte, P.; Goncalves, A.; Martins, R.; Salgueiro, C.A.; Fortunato, E. Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci. Rep. 2015, 5, 9910. [Google Scholar] [CrossRef]
- Wenderich, K.; Noack, J.; Kärgel, A.; Trunschke, A.; Mul, G. Effect of Temperature and pH on Phase Transformations in Citric Acid Mediated Hydrothermal Growth of Tungsten Oxide. Eur. J. Inorg. Chem. 2018, 2018, 917–923. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Haider, Z.; Van, T.K.; Pawar, A.U.; Kang, M.J.; Kim, C.W.; Kang, Y.S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Wang, L.; Gouma, P.-I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505–508. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Pfeifer, J.; Balázsi, C.; Tóth, A.L.; Varga-Josepovits, K.; Madarász, J.; Pokol, G. Thermal stability of hexagonal tungsten trioxide in air. J. Therm. Anal. Calorim. 2008, 94, 499–505. [Google Scholar] [CrossRef]
- Abbaspoor, M.; Aliannezhadi, M.; Tehrani, F.S. Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method. Opt. Mater. 2021, 121, 111552. [Google Scholar] [CrossRef]
- Gouma, P.I.; Kalyanasundaram, K. Novel synthesis of hexagonal WO3 nanostructures. J. Mater. Sci. 2015, 50, 3517–3522. [Google Scholar] [CrossRef]
- Kharade, R.R.; Patil, K.R.; Patil, P.S.; Bhosale, P.N. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO3 thin films. Mater. Res. Bull. 2012, 47, 1787–1793. [Google Scholar] [CrossRef]
- Cremonesi, A.; Bersani, D.; Lottici, P.P.; Djaoued, Y.; Ashrit, P.V. WO3 thin films by sol–gel for electrochromic applications. J. Non-Cryst. Solids 2004, 345–346, 500–504. [Google Scholar] [CrossRef]
- Perfecto, T.M.; Zito, C.A.; Volanti, D.P. Room-temperature volatile organic compounds sensing based on WO3·0.33H2O, hexagonal-WO3, and their reduced graphene oxide composites. RSC Adv. 2016, 6, 105171–105179. [Google Scholar] [CrossRef]
- Seguin, L.; Figlarz, M.; Pannetier, J. A novel supermetastable WO3 phase. Solid State Ion. 1993, 63–65, 437–441. [Google Scholar] [CrossRef]
- Figlarz, M. New oxides in the WO3-MoO3 system. Prog. Solid State Chem. 1989, 19, 1–46. [Google Scholar] [CrossRef]
- Choi, H.G.; Jung, Y.H.; Kim, D.K. Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet. J. Am. Ceram. Soc. 2005, 88, 1684–1686. [Google Scholar] [CrossRef]
- Chacón, C.; Rodríguez-Pérez, M.; Oskam, G.; Rodríguez-Gattorno, G. Synthesis and characterization of WO3 polymorphs: Monoclinic, orthorhombic and hexagonal structures. J. Mater. Sci. Mater. Electron. 2014, 26, 5526–5531. [Google Scholar] [CrossRef]
- Ortega, J.M.; Martínez, A.I.; Acosta, D.R.; Magaña, C.R. Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis. Sol. Energy Mater. Sol. Cells 2006, 90, 2471–2479. [Google Scholar] [CrossRef]
- Wu, P.M.; Ishii, S.; Tanabe, K.; Munakata, K.; Hammond, R.H.; Tokiwa, K.; Geballe, T.H.; Beasley, M.R. Synthesis and ionic liquid gating of hexagonal WO3 thin films. Appl. Phys. Lett. 2015, 106, 042602. [Google Scholar] [CrossRef]
- Huang, K.; Pan, Q.; Yang, F.; Ni, S.; Wei, X.; He, D. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 2008, 41, 155417. [Google Scholar] [CrossRef]
- Miao, B.; Zeng, W.; Hussain, S.; Mei, Q.; Xu, S.; Zhang, H.; Li, Y.; Li, T. Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Mater. Lett. 2015, 147, 12–15. [Google Scholar] [CrossRef]
- Ghosh, K.; Roy, A.; Tripathi, S.; Ghule, S.; Singh, A.K.; Ravishankar, N. Insights into nucleation, growth and phase selection of WO3: Morphology control and electrochromic properties. J. Mater. Chem. C 2017, 5, 7307–7316. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Wang, F.; Chen, X.; Feng, Z.; Li, C. K2SO4-Assisted Hexagonal/Monoclinic WO3 Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Appl. Energy Mater. 2018, 1, 2067–2077. [Google Scholar] [CrossRef]
- Li, C.-P.; Lin, F.; Richards, R.M.; Engtrakul, C.; Tenent, R.C.; Wolden, C.A. The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Sol. Energy Mater. Sol. Cells 2014, 121, 163–170. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Exposed facet and crystal phase tuning of hierarchical tungsten oxide nanostructures and their enhanced visible-light-driven photocatalytic performance. CrystEngComm 2015, 17, 9102–9110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xu, Y.; Chen, T.; Liu, M.; Niu, F.; Wei, S.; Liu, J. Simultaneous Synthesis of WO3−x Quantum Dots and Bundle-Like Nanowires Using a One-Pot Template-Free Solvothermal Strategy and Their Versatile Applications. Small 2017, 13, 1603689. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Wu, J.; Cao, L.; Li, Q.; Yanagisawa, K. Microwave-assisted growth of WO3·0.33H2O micro/nanostructures with enhanced visible light photocatalytic properties. CrystEngComm 2013, 15, 7904–7913. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Yu, C.; Wu, J.; Cao, L.; Yanagisawa, K. Hierarchically Structured Snowflakelike WO3·0.33H2O Particles Prepared by a Facile, Green, and Microwave-assisted Method. Chem. Lett. 2011, 40, 579–581. [Google Scholar] [CrossRef]
- Gadewar, S.B.; Hofmann, H.M.; Doherty, M.F. Evolution of Crystal Shape. Cryst. Growth Des. 2004, 4, 109–112. [Google Scholar] [CrossRef]
Sample No. | Vstarting solution | Vfinal solution | Vwater | [WCl6] for Final Solution | Water Content | Synthesis Temperature | Synthesis Time |
---|---|---|---|---|---|---|---|
1 | 5 mL | 50 mL | 0 mL | 0.01 M | 0 vol% | 200 °C | 12 h |
2 | 5 mL | 50 mL | 2.5 mL | 0.01 M | 5 vol% | 200 °C | 12 h |
3 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 12 h |
4 | 5 mL | 50 mL | 10 mL | 0.01 M | 20 vol% | 200 °C | 12 h |
5 | 5 mL | 50 mL | 25 mL | 0.01 M | 50 vol% | 200 °C | 12 h |
6 | 25 mL | 50 mL | 0 mL | 0.05 M | 0 vol% | 200 °C | 12 h |
7 | 25 mL | 50 mL | 2.5 mL | 0.05 M | 5 vol% | 200 °C | 12 h |
8 | 25 mL | 50 mL | 5 mL | 0.05 M | 10 vol% | 200 °C | 12 h |
9 | 25 mL | 50 mL | 10 mL | 0.05 M | 20 vol% | 200 °C | 12 h |
10 | 25 mL | 50 mL | 25 mL | 0.05 M | 50 vol% | 200 °C | 12 h |
Sample No. | Vstarting solution | Vfinal solution | Vwater | [WCl6] for Final Solution | Water Content | Synthesis Temperature | Synthesis Time |
---|---|---|---|---|---|---|---|
11 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 160 °C | 12 h |
12 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 180 °C | 12 h |
13 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 3 h |
14 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 6 h |
15 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 9 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Jinschek, J.R.; Gouma, P.-I. Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals 2023, 13, 690. https://doi.org/10.3390/cryst13040690
Qiu Z, Jinschek JR, Gouma P-I. Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals. 2023; 13(4):690. https://doi.org/10.3390/cryst13040690
Chicago/Turabian StyleQiu, Zanlin, Joerg R. Jinschek, and Pelagia-Irene Gouma. 2023. "Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates" Crystals 13, no. 4: 690. https://doi.org/10.3390/cryst13040690
APA StyleQiu, Z., Jinschek, J. R., & Gouma, P.-I. (2023). Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals, 13(4), 690. https://doi.org/10.3390/cryst13040690