Preparation of HfNbTiTaZr Thin Films by Ionized Jet Deposition Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Phase Composition of the Sample Layers
3.2. Chemical Composition and IJD Transport Coefficients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Meisenkothen, F.; Miracle, D.B.; Woodward, C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 2012, 47, 4062–4074. [Google Scholar] [CrossRef]
- Zýka, J.; Málek, J.; Pala, Z.; Andršová, I.; Veselý, J. Structure and mechanical properties of TaNbHfZrTi high entropy alloy. In Proceedings of the Metal 2015—24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 3–5 June 2015. [Google Scholar]
- Lukáč, F.; Hruška, P.; Cichoň, S.; Vlasák, T.; Čížek, J.; Kmjec, T.; Melikhova, O.; Butterling, M.; Liedke, M.O.; Wagner, G. Defects in thin layers of high entropy alloy HfNbTaTiZr. Acta Phys. Pol. 2020, A137, 219–221. [Google Scholar] [CrossRef]
- Moore, C.M.; Wilson, J.A.; Rushton, M.J.D.; Lee, W.E.; Astbury, J.O.; Middlenurgh, S.C. Hydrogen accommodation in the TiZrNbHfTa high entropy alloy. Acta Mater. 2022, 229, 117832. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, K. Refractory high entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Zýka, J.; Málek, J.; Veselý, J.; Lukáč, F.; Čížek, J.; Kuriplach, J.; Melikhova, O. Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System. Entropy 2019, 21, 114. [Google Scholar] [CrossRef] [Green Version]
- Zherebtsov, S.; Yurchenko, N.; Shaysultanov, D.; Tikhonovsky, M.; Salishchev, G.; Stepanov, N. Microstructure and Mechanical Properties Evolution in HfNbTaTiZr Refractory High-Entropy Alloy During Cold Rolling. Adv. Eng. Mater. 2020, 22, 2000105. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 2018, 211, 87–90. [Google Scholar] [CrossRef]
- Farzaneh, A.; Khorasanim, M.; Farabi, E.; Gibson, I.; Leary, M.; Hossein Ghasemi, A.; Rolfe, B. Sandwich structure printing of Ti-Ni-Ti by directed energy deposition. Virtual Phys. Prototyp. 2022, 17, 1006–1030. [Google Scholar] [CrossRef]
- Hruška, P.; Lukáč, F.; Cichoň, S.; Vondráček, M.; Čížek, J.; Fekete, L.; Lančok, J.; Veselý, J.; Minárik, P.; Cieslar, M.; et al. Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering. J. Alloy. Compd. 2021, 869, 157978. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, K.; Zheng, Y.; Zhou, H.; Wan, Z. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater. Chem. Phys. 2020, 239, 121991. [Google Scholar] [CrossRef]
- Zhang, X.; Pelenovich, V.; Liu, Y.; Ke, X.; Zhang, J.; Yang, B.; Ma, G.; Li, M.; Wang, X. Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY)N high entropy alloy nitride coatings deposited by RF magnetron sputtering. Vacuum 2022, 195, 110710. [Google Scholar] [CrossRef]
- Li, H.; Jiang, N.; Li, J.; Huang, J.; Kong, J.; Xiong, D. Hard and tough (NbTaMoW)Nx high entropy nitride films with sub-stoichiometric nitrogen. J. Alloy. Compd. 2021, 889, 161713. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Hsu, C.H.; Wu, C.Y.; Kao, K.O.; Hsu, C.Y. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr. Appl. Phys. 2018, 18, 512–518. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Zhou, H.; Liu, X. Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum 2020, 181, 109706. [Google Scholar] [CrossRef]
- Xia, A.; Dedoncker, R.; Glushko, I.; Cordill, M.J.; Depla, D.; Franz, R. Influence of the nitrogen content on the structure and properties of MoNbTaVW high entropy alloy thin films. J. Alloy. Compd. 2021, 850, 156740. [Google Scholar] [CrossRef]
- Lukac, F.; Dudr, M.; Musalek, R.; Klecka, J.; Cinert, J.; Cizek, J.; Chraska, T.; Melikhova, O.; Kuriplach, J.; Zyka, J.; et al. Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr. J. Mater. Res. 2018, 33, 3247–3257. [Google Scholar] [CrossRef]
- Málek, J.; Zýka, J.; Lukáč, F.; Čížek, J.; Kunčická, L.; Kocich, R. Microstructure and Mechanical Properties of Sintered and Heat-Treated HfNbTaTiZr High Entropy Alloy. Metals 2019, 9, 1324. [Google Scholar] [CrossRef] [Green Version]
- Metel, A.; Kolobov, V. Glow discharges with electrostatic confinement of fast electrons. J. Phys. D 2015, 48, 233001. [Google Scholar]
- Giacomo, G. Paschen’s law in extreme pressure and temperature conditions. IEEE Trans. Plasma Sci. 2019, 47, 1641–1647. [Google Scholar]
- Müller, G.; Konijnenberg, M.; Krafft, G.; Schultheiss, C. Thin film deposition by means of pulsed electron beam ablation. In Science and Technology of Thin Films; Matacotta, F.C., Ottaviani, G., Eds.; World Scientific: London, UK, 1995; pp. 89–119. [Google Scholar]
- Skočdopole, J.; Lojka, M.; Hlásek, T.; Antončík, F.; Jankovský, O.; Kalvoda, L. Influence of Substrate Temperature on the Morphology and Phase Composition of Thin Films Prepared From Y-123 Targets by the IJD Method. IEEE Trans. Appl. Supercond. 2023, 33, 7500604. [Google Scholar] [CrossRef]
- Skočdopole, J.; Lojka, M.; Hlásek, T.; Antončík, F.; Jankovský, O.; Kalvoda, L. Transport Coefficients in Y-Ba-Cu-O System for Ionized Jet Deposition Method. IEEE Trans. Appl. Supercond. 2021, 31, 9364744. [Google Scholar] [CrossRef]
- Skočdopole, J.; Aversa, L.; Golan, M.; Schenk, A.; Baldi, G.; Kratochvilova, I.; Kalvoda, L.; Nozar, P. Preparing of the chameleon coating by the ion jet deposition method. Acta Polytech. CTU Proc. 2017, 9, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Skočdopole, J.; Kalvoda, L.; Nozar, P.; Netopilík, M. Preparation of polymeric coatings by ionized jet deposition method. Chem. Pap. 2018, 72, 1735–1739. [Google Scholar] [CrossRef]
Sample | Accelerating Voltage U (kV) | Mean Thickness (nm) |
---|---|---|
S16 | 16 | 74 ± 25 |
S18 | 18 | 178 ± 32 |
S20 | 20 | 364 ± 51 |
S22 | 22 | 559 ± 119 |
Phase | S16 | S18 | S20 | S22 |
---|---|---|---|---|
Amorphous phase | 26.5 ± 15.1 | 49.8 ± 11.8 | 64.5 ± 7.5 | 56.4 ± 4.3 |
BCC1 | 51.1 ± 29.2 | 19.1 ± 4.5 | 13.8 ± 1.6 | 27.5 ± 2.1 |
BCC2 | 15.5 ± 8.9 | 28.2 ± 6.7 | 18.4 ± 2.1 | 14.0 ± 1.1 |
FCC | 6.8 ± 3.9 | 2.9 ± 0.7 | 2.5 ± 0.3 | 2.0 ± 0.2 |
Element | Z | Concentration (at. %) |
---|---|---|
Ti | 21 | 22.1 ± 0.9 |
Zr | 40 | 19.6 ± 0.3 |
Nb | 41 | 18.7 ± 0.9 |
Hf | 72 | 20.8 ± 0.6 |
Ta | 73 | 18.7 ± 0.8 |
Element | Concentration, Darker Domain (at. %) | Concentration, Lighter Domain (at. %) |
---|---|---|
Ti | 26.9 | 13.1 |
Zr | 21.7 | 16.8 |
Nb | 13.5 | 15.6 |
Hf | 19.9 | 17.0 |
Ta | 10.7 | 22.8 |
O | 7.3 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skočdopole, J.; Čech, J.; Čapek, J.; Trojan, K.; Kalvoda, L. Preparation of HfNbTiTaZr Thin Films by Ionized Jet Deposition Method. Crystals 2023, 13, 580. https://doi.org/10.3390/cryst13040580
Skočdopole J, Čech J, Čapek J, Trojan K, Kalvoda L. Preparation of HfNbTiTaZr Thin Films by Ionized Jet Deposition Method. Crystals. 2023; 13(4):580. https://doi.org/10.3390/cryst13040580
Chicago/Turabian StyleSkočdopole, Jakub, Jaroslav Čech, Jiří Čapek, Karel Trojan, and Ladislav Kalvoda. 2023. "Preparation of HfNbTiTaZr Thin Films by Ionized Jet Deposition Method" Crystals 13, no. 4: 580. https://doi.org/10.3390/cryst13040580