Corrosion Resistance Performance of Epoxy Coatings Incorporated with Unmilled Micro Aluminium Pigments
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermogravimetric Analysis (TGA)
3.2. Field Emission Scanning Electron Microscope (FE-SEM)
3.3. XRD Analysis
3.4. Mechanical Properties
3.5. Nanoindentation Analysis
3.6. Electrochemical Impedance Spectroscopy (EIS) Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tjong, S.C.; Haydn, C. Nanocrystalline materials and coatings. Mater. Sci. Eng. R Rep. 2004, 45, 1–88. [Google Scholar] [CrossRef]
- Andrievski, R.A. Films as Nanostructured Materials with Characteristic Mechanical Properties. Mater. Trans. 2001, 42, 1471. [Google Scholar] [CrossRef] [Green Version]
- Galliano, F.; Landolt, D. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel. Prog. Org. Coat. 2002, 44, 217. [Google Scholar] [CrossRef]
- Chopra, I.; Ola, S.K.; Priyanka; Dhayal, V.; Shekhawat, D.S. Recent advances in epoxy coatings for corrosion protection of steel: Experimental and modelling approach—A review. Mater. Today Proc. 2022, 62, 3. [Google Scholar] [CrossRef]
- Rajgopalan, N.; Khanna, A.S. Effect of size and morphology on UV-blocking property of nanoZnO in epoxy coating. Int. J. Sci. Res. 2013, 3, 4. [Google Scholar]
- Zhang, M.Q.; Rong, M.Z.; Yu, S.L.; Wetzel, B.; Friedrich, K. Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles. Macromol. Mater. Eng. 2002, 287, 111. [Google Scholar] [CrossRef]
- Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 2009, 204, 237. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Raju, K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Hare, C.H. Corrosion Control of Steel by Organic Coatings. In Uhlig’s Corrosion Handbook; Revie, R.W., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011; pp. 971–983. [Google Scholar]
- Compére, C.; Fréchette, E.; Ghali, E. The corrosion evaluation of painted and artificially damaged painted steel panels by AC impedance measurements. Corros. Sci. 1993, 34, 1259–1274. [Google Scholar] [CrossRef]
- Fedullo, N.; Sorlier, E.; Sclavons, M.; Bailly, C.; Lefebvre, J.-M.; Devaus, J. Polymer-based nanocomposites: Overview, applications and perspectives. Prog. Org. Coat. 2007, 58, 87–95. [Google Scholar] [CrossRef]
- Yang, L.H.; Liu, F.C.; Han, E.H. Effects of P/B on the properties of anticorrosive coatings with different particle size. Prog. Org. Coat. 2005, 53, 91–98. [Google Scholar] [CrossRef]
- Gonzáles, S.; Cáceres, F.; Fox, V.; Souto, R.M. Resistance of metallic substrates protected by an organic coating containing aluminum powder. Prog. Org. Coat. 2003, 46, 317–323. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Koreshkova, A.A. Pulsed Electrodeposition of Composite Coatings Based on Zinc–Nickel Alloy. Prot. Met. Phys. Chem. Surf. 2018, 54, 453–456. [Google Scholar] [CrossRef]
- Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A. Study on functionally graded Zn–Ni–Al2O3 coatings fabricated by pulse electrodeposition. Surf. Eng. 2019, 35, 167–176. [Google Scholar] [CrossRef]
- Becker, O.; Varley, R.; Simon, G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 2002, 43, 4365. [Google Scholar] [CrossRef]
- Gonzalez, S.; Rosca, I.C.M.; Souto, R.M. Investigation of the Corrosion Resistance Characteristics of Pigments in Alkyd Coatings on Steel. Prog. Org. Coat. 2001, 43, 282. [Google Scholar] [CrossRef]
- Supplit, R.; Schubert, U.S. Corrosion Protection of Aluminum Pigments by Sol–Gel Coatings. Corros. Sci. 2007, 49, 3325–3332. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.; Liu, H.; Han, K. Preparation and characterisation of aluminium pigments coated with silica for corrosion protection. Corros. Sci. 2011, 53, 1694–1699. [Google Scholar] [CrossRef]
- Karbasi, A.; Moradian, S.; Tahmassebi, N.; Ghodsi, P. Achievement of optimal aluminum flake orientation by the use of special cubic experimental design. Prog. Org. Coat. 2006, 57, 175–182. [Google Scholar] [CrossRef]
- Jalilia, M.; Rostamia, M.; Ramezanzadeh, B. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle. Appl. Surf. Sci. 2015, 328, 95–108. [Google Scholar] [CrossRef]
- Madhankumar, A.; Nagarajan, S.; Rajendran, N.; Nishimura, T. EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test. J. Solid State Electrochem. 2012, 16, 2085–2093. [Google Scholar]
- Liang, Y.; Liu, F.-C.; Nie, M.; Zhao, S.; Lin, J.; Han, E.-H. Influence of Nano-Al Concentrates on the Corrosion Resistance of Epoxy Coatings. J. Mater. Sci. Technol. 2013, 29, 353–358. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Seikh, A.; Mohammed, J.A.; Al-Zahrani, S.M.; Sherif, E.-S.M. Development and Characterization of PA 450 and PA 3282 Epoxy Coatings as Anti-Corrosion Materials for Offshore Applications. Materials 2022, 15, 2562. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Chafidz, A.; Al-Zahrani, S.M.; Alharthi, N.H. Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterization. Prog. Org. Coat. 2018, 119, 109–115. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Sherif, E.S.M.; Alam, M.; Shaikh, H.; Alharthi, N.H.; Al-Zahrani, S.M. Synergistic effect of Ag and ZnO nanoparticles on polypyrrole-incorporated epoxy/2pack coatings and their corrosion performances in chloride solutions. Coatings 2019, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Samad, U.A.; Alam, M.A.; Anis, A.; Abdo, H.S.; Shaikh, H.; Al-Zahrani, S.M. Nanomechanical and Electrochemical Properties of ZnO-Nanoparticle-Filled Epoxy Coatings. Coatings 2022, 12, 282. [Google Scholar] [CrossRef]
- Azani, N.F.S.M.; Hussin, M.H. Comparison of cellulose nanocrystal (CNC) filler on chemical, mechanical, and corrosion properties of epoxy-Zn protective coatings for mild steel in 3.5% NaCl solution. Cellulose 2021, 28, 6523–6543. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, D.H.; Jung, I.H.; Cifuentes, J.I.; Rhee, K.Y.; Hui, D. Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder. Compos. Part B Eng. 2012, 43, 1743–1748. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 2001, 22, 178–183. [Google Scholar]
- Nicodemo, L.; Nicolais, L. Mechanical properties of metal/polymer composites. J. Mater. Sci. Lett. 1983, 2, 201–203. [Google Scholar] [CrossRef]
- Taşdemır, M.; Gülsoy, H.Ő. Mechanical Properties of Polymers Filled with Iron Powder. Int. J. Polym. Mater. 2008, 57, 258–265. [Google Scholar] [CrossRef]
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef]
- Feliu, S., Jr. Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Fayemi, O.E.; Sherif, E.M.; Junaedi, H.; Ebenso, E.E. Synthesis, electrochemical studies, and antimicrobial properties of Fe3O4 nanoparticles from callistemon viminalis plant extracts. Materials 2020, 13, 4894. [Google Scholar] [CrossRef] [PubMed]
- AlOtaibi, A.A.; Sherif, E.-S.M.; Zinelis, S.; Al Jabbari, Y.S. Corrosion behavior of two cp titanium dental implants connected by cobalt chromium metal superstructure in artificial saliva and the influence of immersion time. Int. J. Electrochem. Sci. 2016, 11, 5877–5890. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.-M. Effects of 1,5-Naphthalenediol on Aluminum Corrosion as a Corrosion Inhibitor in 0.50 M NaCl. J. Electrochem. Soc. 2005, 152, B205. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Sherif, E.-S.M.; Al-Zahrani, S.M. Mechanical Properties and Corrosion Behavior of Different Coatings Fabricated by Diglycidyl Ether of Bisphenol-A Epoxy Resin and Aradur®-3282 Curing Agent. Int. J. Electrochem. Sci. 2013, 8, 8388–8400. [Google Scholar]
- Alam, M.A.; Samad, U.A.; Sherif, E.-S.M.; Seikh, A.; Al-Zahrani, S.M.; Alharthi, N.H.; Alam, M. Synergistic effect of Ag and ZnO nanoparticles on polyaniline incorporated epoxy/2pack coatings for splash zone applications. J. Coat. Technol. Res. 2019, 16, 835–845. [Google Scholar] [CrossRef]
- Gopi, D.; Sherif, E.S.M.; Surendiran, M.; Sakila, D.A.; Kavitha, L. Corrosion inhibition by benzotriazole derivatives and sodium dodecyl sulphate as corrosion inhibitors for copper in ground water at different temperatures. Surf. Interface Anal. 2015, 47, 618–625. [Google Scholar] [CrossRef]
- Fan, L.; Tang, F.; Reis, S.T.; Chen, G.; Koenigstein, M.L. Corrosion Resistances of Steel Pipes Internally Coated with Enamel. Corrosion 2017, 73, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Reis, S.T.; Chen, G.; Koenigstein, M.L. Corrosion Resistance of Pipeline Steel with Damaged Enamel Coating and Cathodic Protection. Coatings 2018, 8, 185. [Google Scholar]
- Mayne, J.E.O. The mechanism of the inhibition of the corrosion of iron and steel by means of paint. Off. Dig. 1952, 24, 127. [Google Scholar]
- Samad, U.A.; Alam, M.A.; Anis, A.; Sherif, E.S.M.; Al-Mayman, S.I.; Al-Zahrani, S.M. Effect of Incorporated ZnO Nanoparticles on the Corrosion Performance of SiO2 Nanoparticle-Based Mechanically Robust Epoxy Coatings. Materials 2020, 13, 3767. [Google Scholar] [CrossRef]
- Davis, G.; Krebs, L.; Dacres, C. Coating evaluation and validation of accelerated test conditions using an in-situ corrosion sensor. J. Coat. Technol. 2002, 74, 69–74. [Google Scholar] [CrossRef]
- Bacon, R.C.; Smith, J.J.; Rugg, F.M. Electrolytic resistance in evaluating protective merit of coatings on metals. Ind. Eng. Chem. 1948, 40, 161–167. [Google Scholar] [CrossRef]
- Tsai, P.-Y.; Chen, T.-E.; Lee, Y.-L. Development and characterization of anticorrosion and antifriction properties for high performance polyurethane/graphene composite coatings. Coatings 2018, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Kilpeläinen, V.; Gutierrez, A.; van Loon, S. Anticorrosive pigments—Properties of different talcs compared in corrosion testing. Eur. Coat. J. 2012, 4, 26. [Google Scholar]
Sample Code | Epoxy (gm) | MIBK (mL) | Xylene (mL) | Silane | Al wt.% | Dispersing Additive | Levelling Agent | Air Release Additive | PA-450 (gm) |
---|---|---|---|---|---|---|---|---|---|
Al-1 | 83.34 | 8 | 8 | 2.0 | 1.0 | 1.0 | 1.0 | 1.0 | 15.90 |
Al-2 | 83.34 | 8 | 8 | 2.0 | 2.0 | 1.0 | 1.0 | 1.0 | 15.90 |
Al-3 | 83.34 | 8 | 8 | 2.0 | 3.0 | 1.0 | 1.0 | 1.0 | 15.90 |
Sample Name | T 15% | 25% | 50% | 75% | Residue |
---|---|---|---|---|---|
Epoxy | 240.22 | 360.54 | 413.03 | 435.24 | 7.88 |
Al-1 | 325.72 | 380.73 | 425.91 | 450.44 | 10.82 |
Al-2 | 356.45 | 389.58 | 432.5 | 468.23 | 19.54 |
Al-3 | 351.55 | 386.34 | 432.02 | 463.61 | 17.22 |
Sample Code | Dry Film Thickness (µm) | Number of Oscillations | Failure Load (Kg) | Impact Resistance (lb/in2) |
---|---|---|---|---|
Epoxy | 100 ± 10 | 159 | 5.5 | 48 |
Al-1 | 100 ± 10 | 164 | 5 | 48 |
Al-2 | 100 ± 10 | 170 | 5.5 | 48 |
Al-3 | 100 ± 10 | 176 | 6 | 64 |
Sample Code | Hardness (GPa) | Modulus (GPa) |
---|---|---|
Epoxy | 0.120 | 3.3 |
Al-1 | 0.146 | 3.6 |
Al-2 | 0.156 | 4.0 |
Al-3 | 0.153 | 3.8 |
RS/Ω cm2 | Q1 | RP1/MΩ cm2 | Q2 | RP2/MΩ cm2 | |||
---|---|---|---|---|---|---|---|
YQ1/F cm−2 | n | YQ2/F cm−2 | n | ||||
Al-1 (1 h) | 158 | 0.000818 | 0.97 | 1538 | 0.000814 | 0.68 | 7586 |
Al-2 (1 h) | 142 | 0.000934 | 0.96 | 1350 | 0.001072 | 0.80 | 4164 |
Al-3 (1 h) | 135 | 0.000981 | 0.90 | 123 | 0.001084 | 0.72 | 1643 |
Al-1 (7 d) | 131 | 0.000965 | 0.97 | 3736 | 0.001662 | 0.59 | 2121 |
Al-2 (7 d) | 127 | 0.001288 | 0.93 | 198.0 | 0.003962 | 0.19 | 1836 |
Al-3 (7 d) | 102 | 0.001006 | 0.97 | 0.4041 | 0.095990 | 0.12 | 1065 |
Al-1 (14 d) | 112 | 0.000924 | 0.98 | 388.8 | 0.000245 | 0.58 | 3649 |
Al-2 (14 d) | 98 | 0.008549 | 0.98 | 291.2 | 0.001305 | 0.57 | 3203 |
Al-3 (14 d) | 89 | 0.001029 | 0.97 | 162.8 | 0.001179 | 0.17 | 2125 |
Al-1 (21 d) | 104 | 0.0008742 | 0.98 | 686.9 | 0.008166 | 0.54 | 1108 |
Al-2 (21 d) | 100 | 0.0008222 | 0.98 | 6934 | 0.0009125 | 0.54 | 883.4 |
Al-3 (21 d) | 93 | 0.0009863 | 0.97 | 4586 | 0.001050 | 0.31 | 452.7 |
Al-1 (30 d) | 99 | 0.0013180 | 0.93 | 353.1 | 0.002381 | 0.33 | 404.8 |
Al-2 (30 d) | 92 | 0.0009002 | 0.97 | 496.2 | 0.001555 | 0.59 | 248.4 |
Al-3 (30 d) | 86 | 0.006135 | 0.94 | 99.9 | 0.009880 | 0.97 | 228.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdus Samad, U.; Alam, M.A.; Seikh, A.H.; Mohammed, J.A.; Al-Zahrani, S.M.; Sherif, E.-S.M. Corrosion Resistance Performance of Epoxy Coatings Incorporated with Unmilled Micro Aluminium Pigments. Crystals 2023, 13, 558. https://doi.org/10.3390/cryst13040558
Abdus Samad U, Alam MA, Seikh AH, Mohammed JA, Al-Zahrani SM, Sherif E-SM. Corrosion Resistance Performance of Epoxy Coatings Incorporated with Unmilled Micro Aluminium Pigments. Crystals. 2023; 13(4):558. https://doi.org/10.3390/cryst13040558
Chicago/Turabian StyleAbdus Samad, Ubair, Mohammad Asif Alam, Asiful H. Seikh, Jabair A. Mohammed, Saeed M. Al-Zahrani, and El-Sayed M. Sherif. 2023. "Corrosion Resistance Performance of Epoxy Coatings Incorporated with Unmilled Micro Aluminium Pigments" Crystals 13, no. 4: 558. https://doi.org/10.3390/cryst13040558
APA StyleAbdus Samad, U., Alam, M. A., Seikh, A. H., Mohammed, J. A., Al-Zahrani, S. M., & Sherif, E.-S. M. (2023). Corrosion Resistance Performance of Epoxy Coatings Incorporated with Unmilled Micro Aluminium Pigments. Crystals, 13(4), 558. https://doi.org/10.3390/cryst13040558