kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect
Abstract
:1. Introduction
2. Modeling Method and Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photon. 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Kramer, P.L.; Windeler, M.K.R.; Mecseki, K.; Champenois, E.G.; Hoffmann, M.C.; Tavella, F. Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source. Opt. Express 2020, 28, 16951–16967. [Google Scholar] [CrossRef]
- Hädrich, S.; Rothhardt, J.; Krebs, M.; Demmler, S.; Klenke, A.; Tünnermann, A.; Limpert, J. Single-pass high harmonic gen-eration at high repetition rate and photon flux. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 172002. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Calegari, F.; Lucchini, M.; Vozzi, C.; Stagira, S.; Sansone, G.; Nisoli, M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photon. 2010, 4, 875–879. [Google Scholar] [CrossRef]
- Wu, Y.; Cunningham, E.; Zang, H.; Li, J.; Chini, M.; Wang, X.; Wang, Y.; Zhao, K.; Chang, Z. Generation of high-flux atto-second extreme ultraviolet continuum with a 10 TW laser. Appl. Phys. Lett. 2013, 102, 201104. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Yuan, H.; Midorikawa, K.; Lan, P.; Takahashi, E.J. Towards GW-scale isolated attosecond pulse far beyond carbon k-edge driven by mid-infrared waveform synthesizer. Appl. Sci. 2018, 8, 2451. [Google Scholar] [CrossRef] [Green Version]
- Mangles, S.P.D.; Murphy, C.D.; Najmudin, Z.; Thomas, A.G.R.; Collier, J.L.; Dangor, A.E.; Divall, E.J.; Foster, P.S.; Gallacher, J.G.; Hooker, C.J.; et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 2004, 431, 535–538. [Google Scholar] [CrossRef]
- Ouillé, M.; Vernier, A.; Böhle, F.; Bocoum, M.; Jullien, A.; Lozano, M.; Rousseau, J.-P.; Cheng, Z.; Gustas, D.; Blumenstein, A.; et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci. Appl. 2020, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Riedel, R.; Willner, A.; Mans, T.; Schnitzler, C.; Russbueldt, P.; Dolkemeyer, J.; Seise, E.; Gottschall, T.; Hädrich, S.; et al. Yb: YAG innoslab amplifier: Efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt. Lett. 2011, 36, 2456–2458. [Google Scholar] [CrossRef]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Herkommer, C.; Krötz, P.; Jung, R.; Klingebiel, S.; Wandt, C.; Bessing, R.; Walch, P.; Produit, T.; Michel, K.; Bauer, D.; et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 2020, 28, 30164–30173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chi, H.; Baumgarten, C.; Dehne, K.; Meadows, A.R.; Davenport, A.; Murray, G.; Reagan, B.A.; Menoni, C.S.; Rocca, J.J. 1.1 J Yb: YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 2020, 45, 6615–6618. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.; Balla, P.; Li, C.; Arisholm, G.; Winkelmann, L.; Hartl, I.; Heyl, C.M. Factor 30 pulse compression by hybrid multipass multiplate spectral broadening. Ultrafast Sci. 2022, 2022, 9754919. [Google Scholar] [CrossRef]
- Lu, C.-H.; Wu, W.-H.; Kuo, S.-H.; Guo, J.-Y.; Chen, M.-C.; Yang, S.-D.; Kung, A.H. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration. Opt. Express 2019, 27, 15638–15648. [Google Scholar] [CrossRef]
- Kaumanns, M.; Pervak, V.; Kormin, D.; Leshchenko, V.; Kessel, A.; Ueffing, M.; Chen, Y.; Nubbemeyer, T. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. 2018, 43, 5877–5880. [Google Scholar] [CrossRef]
- Fan, G.; Carpeggiani, P.A.; Tao, Z.; Coccia, G.; Safaei, R.; Kaksis, E.; Pugzlys, A.; Légaré, F.; Schmidt, B.E.; Baltuška, A. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers. Opt. Lett. 2021, 46, 896–899. [Google Scholar] [CrossRef]
- Böhle, F.; Kretschmar, M.; Jullien, A.; Kovacs, M.; Miranda, M.; Romero, R.; Crespo, H.; Morgner, U.; Simon, P.; Martens, R.L.; et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 2014, 11, 095401. [Google Scholar] [CrossRef]
- Hanna, M.; Délen, X.; Lavenu, L.; Guichard, F.; Zaouter, Y.; Druon, F.; Georges, P. Nonlinear temporal compression in multipass cells: Theory. J. Opt. Soc. Am. B 2017, 34, 1340–1347. [Google Scholar] [CrossRef]
- Kaumanns, M.; Kormin, D.; Nubbemeyer, T.; Pervak, V.; Karsch, S. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 2021, 46, 929–932. [Google Scholar] [CrossRef]
- Mourou, G.; Mironov, S.; Khazanov, E.; Sergeev, A. Single cycle thin film compressor opening the door to Zeptosec-ond-Exawatt physics. Eur. Phys. J. Spec. Top. 2014, 223, 1181–1188. [Google Scholar] [CrossRef]
- Bespalov, V.I.; Talanov, V.I. Filamentary structure of light beams in nonlinear liquids. J. Exp. Theoretical Phys. Lett. 1966, 3, 307–310. [Google Scholar]
- Mironov, S.Y.; Fourmaux, S.; Lassonde, P.; Ginzburg, V.N.; Payeur, S.; Kieffer, J.-C.; Khazanov, E.A.; Mourou, G. Thin plate compression of a sub-petawatt Ti:Sa laser pulses. Appl. Phys. Lett. 2020, 116, 241101. [Google Scholar] [CrossRef]
- Ginzburg, V.; Yakovlev, I.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaikin, I.; Shaykin, A.; Khazanov, E. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 2021, 29, 28297. [Google Scholar] [CrossRef]
- Butkus, R.; Danielius, R.; Dubietis, A.; Piskarskas, A.; Stabinis, A. Progress in chirped pulse optical parametric amplifiers. Appl. Phys. B Laser Opt. 2004, 79, 693–700. [Google Scholar] [CrossRef]
- Yin, Y.; Chew, A.; Ren, X.; Li, J.; Wang, Y.; Wu, Y.; Chang, Z. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Sci. Rep. 2017, 7, srep45794. [Google Scholar] [CrossRef] [Green Version]
- Kessel, A.; Leshchenko, V.E.; Jahn, O.; Krüger, M.; Münzer, A.; Schwarz, A.; Pervak, V.; Trubetskov, M.; Trushin, S.A.; Krausz, F.; et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 2018, 5, 434–442. [Google Scholar] [CrossRef]
- Xue, B.; Tamaru, Y.; Fu, Y.; Yuan, H.; Lan, P.; Mücke, O.D.; Suda, A.; Midorikawa, K.; Takahashi, E.J. A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses. Ultrafast Sci. 2021, 2021, 9828026. [Google Scholar] [CrossRef]
- Migal, E.A.; Potemkin, F.; Gordienko, V.M. Highly efficient optical parametric amplifier tunable from near- to mid-IR for driving extreme nonlinear optics in solids. Opt. Lett. 2017, 42, 5218–5221. [Google Scholar] [CrossRef] [PubMed]
- Musheghyan, M.; Geetha, P.P.; Faccialà, D.; Pusala, A.; Crippa, G.; Campolo, A.; Ciriolo, A.G.; Devetta, M.; Assion, A.; Manzoni, C.; et al. Tunable, few-cycle, CEP-stable mid-IR optical parametric amplifier for strong field applications. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 185402. [Google Scholar] [CrossRef]
- Andrianov, A.; Szabo, A.; Sergeev, A.; Kim, A.; Chvykov, V.; Kalashnikov, M. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling. Opt. Express 2016, 24, 25974–25982. [Google Scholar] [CrossRef]
- Cao, H.; Tóth, S.; Kalashnikov, M.; Chvykov, V.; Osvay, K. Highly efficient, cascaded extraction optical parametric amplifier. Opt. Express 2018, 26, 7516–7527. [Google Scholar] [CrossRef] [PubMed]
- Yelisseyev, A.; Lin, Z.S.; Starikova, M.; Isaenko, L.; Lobanov, S. Optical transitions due to native defects in nonlinear optical crystals LiGaS2. J. Appl. Phys. 2012, 111, 113507. [Google Scholar] [CrossRef]
- Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Titov, A.; Petrov, V.; Zondy, J.-J.; Krinitsin, P.; Merkulov, A.; Vedenyapin, V.; Smirnova, J. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 2003, 38, 379–387. [Google Scholar] [CrossRef]
- Namboodiri, M.; Luo, C.; Indorf, G.; Golz, T.; Grguraš, I.; Buss, J.H.; Schulz, M.; Riedel, R.; Prandolini, M.J.; Laarmann, T. Optical properties of Li-based nonlinear crystals for high power mid-IR OPCPA pumped at 1 µm under realistic operational conditions. Opt. Mater. Express 2021, 11, 231–239. [Google Scholar] [CrossRef]
- Qu, S.Z.; Liang, H.K.; Liu, K.; Zou, X.; Li, W.k.; Wang, Q.J.; Zhang, Y. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt. Lett. 2019, 44, 2422–2425. [Google Scholar] [CrossRef] [PubMed]
- Hrisafov, S.; Pupeikis, J.; Chevreuil, P.-A.; Brunner, F.; Phillips, C.; Gallmann, L.; Keller, U. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt. Express 2020, 28, 40145–40154. [Google Scholar] [CrossRef]
- Product Dira Series Page of TRUMPF Scientific Lasers. Available online: https://www.trumpf-scientific-lasers.com/products/dira-series/ (accessed on 13 February 2023).
- Wood, R.M. Laser Damage in Optical Materials; Taylor & Francis: Oxfordshire, UK, 2003; Chapter 4. [Google Scholar]
- Zapata, L.E.; Lin, H.; Calendron, A.-L.; Cankaya, H.; Hemmer, M.; Reichert, F.; Huang, W.R.; Granados, E.; Hong, K.-H.; Kärtner, F.X. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers. Opt. Lett. 2015, 40, 2610–2613. [Google Scholar] [CrossRef]
- Zou, X.; Li, W.; Qu, S.; Liu, K.; Li, H.; Wang, Q.; Zhang, Y.; Liang, H. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate. Laser Photonics Rev. 2021, 15, 2000292. [Google Scholar] [CrossRef]
- Molchanov, V.Y.; Yushkov, K.B.; Kostryukov, P.V.; Gornostaev, P.B.; Vorobiev, N.S. Measurement of amplified binary-modulated chirped laser pulses generated by different acousto-optic pulse shaping algorithms. Opt. Laser Technol. 2021, 142, 107220. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhou, B.; Ma, J.; Yuan, P.; Qian, L. Spatiotemporal couplings through a nonlinear phase in broadband optical parametric amplification. Opt. Lett. 2021, 46, 5743–5746. [Google Scholar] [CrossRef]
- Wang, J.; Jin, Y.; Ma, J.; Sun, T.; Jing, X. Design and analysis of broadband high-efficiency pulse compression gratings. Appl. Opt. 2010, 49, 2969–2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessi, D.A.; Rosso, P.A.; Nguyen, H.T.; Aasen, M.D.; Britten, J.A.; Haefner, C. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers. Opt. Express 2016, 24, 30015–30023. [Google Scholar] [CrossRef] [PubMed]
Parameters | Double-Crystal Scenario | Triple-Crystal Scenario | |||
---|---|---|---|---|---|
Amplifier | OPA1 | OPA2 | OPA1 | OPA2 | OPA3 |
Phase-matching angle (degree) | 51.2 | 45.7 | 51.2 | 45.7 | 41.4 |
Internal noncollinear angle (degree) | 0 | 1.5 | 0 | 1.5 | 2.2 |
Pump pulse duration (ps) | 45 | 50 | 22 | 32 | 40 |
Pump delay (ps) | 25 | −20 | 37 | 12 | −22 |
Pump energy (mJ) | 91.7 | 101.9 | 44.8 | 65.2 | 81.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, X.; Li, J.; Wang, H.; Wang, Y.; Zhao, W.; Cao, H.; Fu, Y. kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals 2023, 13, 481. https://doi.org/10.3390/cryst13030481
Liu K, Liu X, Li J, Wang H, Wang Y, Zhao W, Cao H, Fu Y. kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals. 2023; 13(3):481. https://doi.org/10.3390/cryst13030481
Chicago/Turabian StyleLiu, Keyang, Xin Liu, Jinhui Li, Hushan Wang, Yishan Wang, Wei Zhao, Huabao Cao, and Yuxi Fu. 2023. "kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect" Crystals 13, no. 3: 481. https://doi.org/10.3390/cryst13030481
APA StyleLiu, K., Liu, X., Li, J., Wang, H., Wang, Y., Zhao, W., Cao, H., & Fu, Y. (2023). kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals, 13(3), 481. https://doi.org/10.3390/cryst13030481