kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect
Abstract
1. Introduction
2. Modeling Method and Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photon. 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Kramer, P.L.; Windeler, M.K.R.; Mecseki, K.; Champenois, E.G.; Hoffmann, M.C.; Tavella, F. Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source. Opt. Express 2020, 28, 16951–16967. [Google Scholar] [CrossRef]
- Hädrich, S.; Rothhardt, J.; Krebs, M.; Demmler, S.; Klenke, A.; Tünnermann, A.; Limpert, J. Single-pass high harmonic gen-eration at high repetition rate and photon flux. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 172002. [Google Scholar] [CrossRef]
- Ferrari, F.; Calegari, F.; Lucchini, M.; Vozzi, C.; Stagira, S.; Sansone, G.; Nisoli, M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photon. 2010, 4, 875–879. [Google Scholar] [CrossRef]
- Wu, Y.; Cunningham, E.; Zang, H.; Li, J.; Chini, M.; Wang, X.; Wang, Y.; Zhao, K.; Chang, Z. Generation of high-flux atto-second extreme ultraviolet continuum with a 10 TW laser. Appl. Phys. Lett. 2013, 102, 201104. [Google Scholar] [CrossRef]
- Fu, Y.; Yuan, H.; Midorikawa, K.; Lan, P.; Takahashi, E.J. Towards GW-scale isolated attosecond pulse far beyond carbon k-edge driven by mid-infrared waveform synthesizer. Appl. Sci. 2018, 8, 2451. [Google Scholar] [CrossRef]
- Mangles, S.P.D.; Murphy, C.D.; Najmudin, Z.; Thomas, A.G.R.; Collier, J.L.; Dangor, A.E.; Divall, E.J.; Foster, P.S.; Gallacher, J.G.; Hooker, C.J.; et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 2004, 431, 535–538. [Google Scholar] [CrossRef]
- Ouillé, M.; Vernier, A.; Böhle, F.; Bocoum, M.; Jullien, A.; Lozano, M.; Rousseau, J.-P.; Cheng, Z.; Gustas, D.; Blumenstein, A.; et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci. Appl. 2020, 9, 47. [Google Scholar] [CrossRef]
- Schulz, M.; Riedel, R.; Willner, A.; Mans, T.; Schnitzler, C.; Russbueldt, P.; Dolkemeyer, J.; Seise, E.; Gottschall, T.; Hädrich, S.; et al. Yb: YAG innoslab amplifier: Efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt. Lett. 2011, 36, 2456–2458. [Google Scholar] [CrossRef]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Herkommer, C.; Krötz, P.; Jung, R.; Klingebiel, S.; Wandt, C.; Bessing, R.; Walch, P.; Produit, T.; Michel, K.; Bauer, D.; et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 2020, 28, 30164–30173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chi, H.; Baumgarten, C.; Dehne, K.; Meadows, A.R.; Davenport, A.; Murray, G.; Reagan, B.A.; Menoni, C.S.; Rocca, J.J. 1.1 J Yb: YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 2020, 45, 6615–6618. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.; Balla, P.; Li, C.; Arisholm, G.; Winkelmann, L.; Hartl, I.; Heyl, C.M. Factor 30 pulse compression by hybrid multipass multiplate spectral broadening. Ultrafast Sci. 2022, 2022, 9754919. [Google Scholar] [CrossRef]
- Lu, C.-H.; Wu, W.-H.; Kuo, S.-H.; Guo, J.-Y.; Chen, M.-C.; Yang, S.-D.; Kung, A.H. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration. Opt. Express 2019, 27, 15638–15648. [Google Scholar] [CrossRef]
- Kaumanns, M.; Pervak, V.; Kormin, D.; Leshchenko, V.; Kessel, A.; Ueffing, M.; Chen, Y.; Nubbemeyer, T. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. 2018, 43, 5877–5880. [Google Scholar] [CrossRef]
- Fan, G.; Carpeggiani, P.A.; Tao, Z.; Coccia, G.; Safaei, R.; Kaksis, E.; Pugzlys, A.; Légaré, F.; Schmidt, B.E.; Baltuška, A. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers. Opt. Lett. 2021, 46, 896–899. [Google Scholar] [CrossRef]
- Böhle, F.; Kretschmar, M.; Jullien, A.; Kovacs, M.; Miranda, M.; Romero, R.; Crespo, H.; Morgner, U.; Simon, P.; Martens, R.L.; et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 2014, 11, 095401. [Google Scholar] [CrossRef]
- Hanna, M.; Délen, X.; Lavenu, L.; Guichard, F.; Zaouter, Y.; Druon, F.; Georges, P. Nonlinear temporal compression in multipass cells: Theory. J. Opt. Soc. Am. B 2017, 34, 1340–1347. [Google Scholar] [CrossRef]
- Kaumanns, M.; Kormin, D.; Nubbemeyer, T.; Pervak, V.; Karsch, S. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 2021, 46, 929–932. [Google Scholar] [CrossRef]
- Mourou, G.; Mironov, S.; Khazanov, E.; Sergeev, A. Single cycle thin film compressor opening the door to Zeptosec-ond-Exawatt physics. Eur. Phys. J. Spec. Top. 2014, 223, 1181–1188. [Google Scholar] [CrossRef]
- Bespalov, V.I.; Talanov, V.I. Filamentary structure of light beams in nonlinear liquids. J. Exp. Theoretical Phys. Lett. 1966, 3, 307–310. [Google Scholar]
- Mironov, S.Y.; Fourmaux, S.; Lassonde, P.; Ginzburg, V.N.; Payeur, S.; Kieffer, J.-C.; Khazanov, E.A.; Mourou, G. Thin plate compression of a sub-petawatt Ti:Sa laser pulses. Appl. Phys. Lett. 2020, 116, 241101. [Google Scholar] [CrossRef]
- Ginzburg, V.; Yakovlev, I.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaikin, I.; Shaykin, A.; Khazanov, E. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 2021, 29, 28297. [Google Scholar] [CrossRef]
- Butkus, R.; Danielius, R.; Dubietis, A.; Piskarskas, A.; Stabinis, A. Progress in chirped pulse optical parametric amplifiers. Appl. Phys. B Laser Opt. 2004, 79, 693–700. [Google Scholar] [CrossRef]
- Yin, Y.; Chew, A.; Ren, X.; Li, J.; Wang, Y.; Wu, Y.; Chang, Z. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Sci. Rep. 2017, 7, srep45794. [Google Scholar] [CrossRef]
- Kessel, A.; Leshchenko, V.E.; Jahn, O.; Krüger, M.; Münzer, A.; Schwarz, A.; Pervak, V.; Trubetskov, M.; Trushin, S.A.; Krausz, F.; et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 2018, 5, 434–442. [Google Scholar] [CrossRef]
- Xue, B.; Tamaru, Y.; Fu, Y.; Yuan, H.; Lan, P.; Mücke, O.D.; Suda, A.; Midorikawa, K.; Takahashi, E.J. A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses. Ultrafast Sci. 2021, 2021, 9828026. [Google Scholar] [CrossRef]
- Migal, E.A.; Potemkin, F.; Gordienko, V.M. Highly efficient optical parametric amplifier tunable from near- to mid-IR for driving extreme nonlinear optics in solids. Opt. Lett. 2017, 42, 5218–5221. [Google Scholar] [CrossRef] [PubMed]
- Musheghyan, M.; Geetha, P.P.; Faccialà, D.; Pusala, A.; Crippa, G.; Campolo, A.; Ciriolo, A.G.; Devetta, M.; Assion, A.; Manzoni, C.; et al. Tunable, few-cycle, CEP-stable mid-IR optical parametric amplifier for strong field applications. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 185402. [Google Scholar] [CrossRef]
- Andrianov, A.; Szabo, A.; Sergeev, A.; Kim, A.; Chvykov, V.; Kalashnikov, M. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling. Opt. Express 2016, 24, 25974–25982. [Google Scholar] [CrossRef]
- Cao, H.; Tóth, S.; Kalashnikov, M.; Chvykov, V.; Osvay, K. Highly efficient, cascaded extraction optical parametric amplifier. Opt. Express 2018, 26, 7516–7527. [Google Scholar] [CrossRef] [PubMed]
- Yelisseyev, A.; Lin, Z.S.; Starikova, M.; Isaenko, L.; Lobanov, S. Optical transitions due to native defects in nonlinear optical crystals LiGaS2. J. Appl. Phys. 2012, 111, 113507. [Google Scholar] [CrossRef]
- Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Titov, A.; Petrov, V.; Zondy, J.-J.; Krinitsin, P.; Merkulov, A.; Vedenyapin, V.; Smirnova, J. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 2003, 38, 379–387. [Google Scholar] [CrossRef]
- Namboodiri, M.; Luo, C.; Indorf, G.; Golz, T.; Grguraš, I.; Buss, J.H.; Schulz, M.; Riedel, R.; Prandolini, M.J.; Laarmann, T. Optical properties of Li-based nonlinear crystals for high power mid-IR OPCPA pumped at 1 µm under realistic operational conditions. Opt. Mater. Express 2021, 11, 231–239. [Google Scholar] [CrossRef]
- Qu, S.Z.; Liang, H.K.; Liu, K.; Zou, X.; Li, W.k.; Wang, Q.J.; Zhang, Y. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt. Lett. 2019, 44, 2422–2425. [Google Scholar] [CrossRef] [PubMed]
- Hrisafov, S.; Pupeikis, J.; Chevreuil, P.-A.; Brunner, F.; Phillips, C.; Gallmann, L.; Keller, U. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt. Express 2020, 28, 40145–40154. [Google Scholar] [CrossRef]
- Product Dira Series Page of TRUMPF Scientific Lasers. Available online: https://www.trumpf-scientific-lasers.com/products/dira-series/ (accessed on 13 February 2023).
- Wood, R.M. Laser Damage in Optical Materials; Taylor & Francis: Oxfordshire, UK, 2003; Chapter 4. [Google Scholar]
- Zapata, L.E.; Lin, H.; Calendron, A.-L.; Cankaya, H.; Hemmer, M.; Reichert, F.; Huang, W.R.; Granados, E.; Hong, K.-H.; Kärtner, F.X. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers. Opt. Lett. 2015, 40, 2610–2613. [Google Scholar] [CrossRef]
- Zou, X.; Li, W.; Qu, S.; Liu, K.; Li, H.; Wang, Q.; Zhang, Y.; Liang, H. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate. Laser Photonics Rev. 2021, 15, 2000292. [Google Scholar] [CrossRef]
- Molchanov, V.Y.; Yushkov, K.B.; Kostryukov, P.V.; Gornostaev, P.B.; Vorobiev, N.S. Measurement of amplified binary-modulated chirped laser pulses generated by different acousto-optic pulse shaping algorithms. Opt. Laser Technol. 2021, 142, 107220. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhou, B.; Ma, J.; Yuan, P.; Qian, L. Spatiotemporal couplings through a nonlinear phase in broadband optical parametric amplification. Opt. Lett. 2021, 46, 5743–5746. [Google Scholar] [CrossRef]
- Wang, J.; Jin, Y.; Ma, J.; Sun, T.; Jing, X. Design and analysis of broadband high-efficiency pulse compression gratings. Appl. Opt. 2010, 49, 2969–2978. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.A.; Rosso, P.A.; Nguyen, H.T.; Aasen, M.D.; Britten, J.A.; Haefner, C. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers. Opt. Express 2016, 24, 30015–30023. [Google Scholar] [CrossRef] [PubMed]
Parameters | Double-Crystal Scenario | Triple-Crystal Scenario | |||
---|---|---|---|---|---|
Amplifier | OPA1 | OPA2 | OPA1 | OPA2 | OPA3 |
Phase-matching angle (degree) | 51.2 | 45.7 | 51.2 | 45.7 | 41.4 |
Internal noncollinear angle (degree) | 0 | 1.5 | 0 | 1.5 | 2.2 |
Pump pulse duration (ps) | 45 | 50 | 22 | 32 | 40 |
Pump delay (ps) | 25 | −20 | 37 | 12 | −22 |
Pump energy (mJ) | 91.7 | 101.9 | 44.8 | 65.2 | 81.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, X.; Li, J.; Wang, H.; Wang, Y.; Zhao, W.; Cao, H.; Fu, Y. kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals 2023, 13, 481. https://doi.org/10.3390/cryst13030481
Liu K, Liu X, Li J, Wang H, Wang Y, Zhao W, Cao H, Fu Y. kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals. 2023; 13(3):481. https://doi.org/10.3390/cryst13030481
Chicago/Turabian StyleLiu, Keyang, Xin Liu, Jinhui Li, Hushan Wang, Yishan Wang, Wei Zhao, Huabao Cao, and Yuxi Fu. 2023. "kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect" Crystals 13, no. 3: 481. https://doi.org/10.3390/cryst13030481
APA StyleLiu, K., Liu, X., Li, J., Wang, H., Wang, Y., Zhao, W., Cao, H., & Fu, Y. (2023). kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect. Crystals, 13(3), 481. https://doi.org/10.3390/cryst13030481