Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and SAXS Measurements
2.2. Molecular Dynamic Simulations
3. Results
3.1. Study of Precursor Cluster Formation by SAXS
3.2. Calculation of the Stability of KDP Oligomers Using the MD Method
3.3. Analysis of Chemical Bonds between Precursor Clusters from Which the Structure of KDP Crystals Is Formed and the Crystal Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gebauer, D.; Kellermeier, M.; Gale, J.D.; Bergstro, L. Pre-nucleation clusters assolute precursors incrystallization. Chem. Soc. Rev. 2014, 43, 2348–2371. [Google Scholar] [CrossRef]
- Askhabov, A.M. Cluster (quatarone) self-organization of matter at the nanoscale level and the formation of crystalline and non-crystalline materials. Zap. Ross. Mineral. O-va 2004, 133, 108–123. [Google Scholar]
- Kovalchuk, M.V.; Blagov, A.E.; Dyakova, Y.A.; Gruzinov, A.Y.; Marchenkova, M.A.; Peters, G.S.; Pisarevsky, Y.V.; Timofeev, V.I.; Volkov, V.V. Investigation of the Initial Crystallization Stage in Lysozyme Solutions by Small-Angle X-ray Scattering. Cryst. Growth Des. 2016, 16, 1792–1797. [Google Scholar]
- Kordonskaya, Y.V.; Timofeev, V.I.; Marchenkova, M.A.; Konarev, P.V. Identification of the Precursor Cluster in the Crystallization Solution of Proteinase K Protein by Molecular Dynamics Methods. Crystals 2022, 12, 484. [Google Scholar]
- Marchenkova, M.A.; Konarev, P.V.; Rakitina, T.V.; Timofeev, V.I.; Boikova, A.S.; Dyakova, Y.A.; Ilina, K.B.; Korzhenevskiy, D.A.; Nikolaeva, A.Y.; Pisarevsky, Y.V.; et al. Dodecamers derived from the crystal structure were found in the pre-crystallization solution of the transaminase from the thermophilic bacterium Thermobaculum terrenum by small-angle X-rayscattering. J. Biomol. Str. Dyn. 2020, 38, 2939–2944. [Google Scholar] [CrossRef]
- Sukhanov, A.E.; Ilina, K.B.; Konarev, P.V.; Peters, G.S.; Pisarevsky, Y.V.; Smirnova, E.S.; Alekseeva, O.A.; Kovalchuk, M.V. Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS. Crystals 2023, 13, 26. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Tie, G.; Hu, H. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing. Appl. Opt. 2016, 55, 8308–8315. [Google Scholar] [CrossRef]
- Peters, G.S.; Gaponov, Y.A.; Konarev, P.V.; Marchenkova, M.A.; Ilina, K.B.; Volkov, V.V.; Pisarevsky, Y.V.; Kovalchuk, M.V. Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions. Nucl. Instrum. Methods Phys. Res. Sect. A 2022, 1025, 166–170. [Google Scholar]
- Hammersley, A.P. FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization Program. J. Appl. Crystallogr. 2016, 49, 646–652. [Google Scholar]
- Konarev, P.V.; Volkov, V.V.; Sokolova, A.V.; Koch, M.H.J.; Svergun, D.I. A Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003, 36, 1277–1282. [Google Scholar]
- Guinier, A.; Fournet, G. Small-Angle Scattering of X-rays; Wiley: New York, NY, USA, 1955; 268p. [Google Scholar]
- Kovalchuk, M.V.; Alekseeva, O.A.; Blagov, A.E.; Ilyushin, G.D.; Il’ina, K.B.; Konarev, P.V.; Lomonov, V.A.; Pisarevsky, Y.V.; Peters, G.S. Investigation of the Structure of Crystal-Forming Solutions of Potassium Dihydrogen Phosphate K(H2PO4) (KDP type) on the Basis of Modeling Precursor Clusters and According to Small-Angle X-Ray Scattering Data. Crystallogr. Rep. 2019, 64, 6–10. [Google Scholar] [CrossRef]
- Malakhova, L.F.; Furmanova, N.G.; Vilensky, A.I.; Grigorieva, M.S.; Simonov, V.I.; Rudneva, E.B.; Voloshin, A.E. Structural features of the KH2PO4: Cr single crystal. Crystallogr. Rep. 2009, 54, 211–218. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. WIREs Comput. Mol. Sci. 2012, 3, 198–210. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Kellon, A.A.; Belfon, A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Horn, H.W.; Swope, W.C.; Pitera, J.W.; Madura, J.D.; Dick, T.J.; Hura, G.L.; Head-Gordon, T. Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. [Google Scholar] [CrossRef] [PubMed]
- Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 1988, 65, 1409–1419. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Gotz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. The effect of long-range electrostatic interactions in simulations of macromolecular crystals—A comparison of the ewald and truncated list methods. J. Chem. Phys. 1993, 98, 10089. [Google Scholar] [CrossRef]
- Zaitseva, N.; Carman, L.; Smolsky, I.; Torres, R.; Yan, M. The effect of impurities and supersaturation on the rapid growth of KDP crystals. J. Cryst. Growth 1999, 204, 512–524. [Google Scholar] [CrossRef]
- Zaitseva, N.; Carman, L. Rapid growth of KDP-type crystals. Prog. Cryst. Growth Charct. 2001, 43, 1–118. [Google Scholar] [CrossRef]
- Leroudier, J.; Zaccoro, J.; Ildefonso, M.; Veesler, S.; Baruchel, J.; Ibanez, A. Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions. Cryst. Growth Des. 2011, 11, 2592–2598. [Google Scholar] [CrossRef]
- Rashkovich, L.N. How crystals grow in solution. Soros Ed. J. 1996, 3, 95–103. [Google Scholar]
T, °C | χ2 | Volume Fractions of Monomers, % | Volume Fractions of Octamers, % |
---|---|---|---|
90 | 1.44 | 74.5 ± 1.2 | 25.5 ± 0.3 |
80 | 1.23 | 74.5 ± 1.3 | 25.5 ± 0.3 |
70 | 1.56 | 73.6 ± 1.2 | 26.4 ± 0.3 |
60 | 1.56 | 75.0 ± 1.3 | 25.0 ± 0.3 |
50 | 1.68 | 71.8 ± 1.3 | 28.2 ± 0.3 |
40 | 1.62 | 64.4 ± 1.2 | 35.6 ± 0.3 |
30 | 1.86 | 62.5 ± 1.2 | 37.5 ± 0.4 |
20 | 1.92 | 57.7 ± 1.1 | 42.3 ± 0.4 |
10 | 1.8 | 49.7 ± 0.9 | 50.3 ± 0.5 |
5 | 2.04 | 48.8 ± 0.8 | 51.2 ± 0.5 |
2.5 | 2.04 | 45.9 ± 0.9 | 54.1 ± 0.6 |
№ | Bond Type | Bond Length, Å |
---|---|---|
Direction c | ||
1 | K1-O1 × 8 | 2.914 |
2 | K1-O1 × 4 | 2.825 |
3 | O1-H1…O1× 6 | |
O1-H1 | 0.775 | |
H1…O1 | 1.729 | |
O1-O1 | 2.502 | |
Direction a | ||
1 | K1-O1 × 8 | 2.825 |
2 | O1-H1…O1 × 4 | |
O1-H1 | 0.775 | |
H1…O1 | 1.729 | |
O1-O1 | 2.502 | |
Direction b | ||
1 | K1-O1 × 6 | 2.825 |
2 | O1-H1…O1 × 4 | |
O1-H1 | 0.775 | |
H1…O1 | 1.729 | |
O1-O1 | 2.502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhanov, A.E.; Konarev, P.V.; Timofeev, V.I.; Garipov, I.F.; Smirnova, E.S.; Peters, G.S.; Ilina, K.B.; Pisarevsky, Y.V.; Alekseeva, O.A.; Kovalchuk, M.V. Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics. Crystals 2023, 13, 1577. https://doi.org/10.3390/cryst13111577
Sukhanov AE, Konarev PV, Timofeev VI, Garipov IF, Smirnova ES, Peters GS, Ilina KB, Pisarevsky YV, Alekseeva OA, Kovalchuk MV. Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics. Crystals. 2023; 13(11):1577. https://doi.org/10.3390/cryst13111577
Chicago/Turabian StyleSukhanov, Andrey E., Petr V. Konarev, Vladimir I. Timofeev, Ildar F. Garipov, Ekaterina S. Smirnova, Georgy S. Peters, Kseniia B. Ilina, Yury V. Pisarevsky, Olga A. Alekseeva, and Mikhail V. Kovalchuk. 2023. "Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics" Crystals 13, no. 11: 1577. https://doi.org/10.3390/cryst13111577
APA StyleSukhanov, A. E., Konarev, P. V., Timofeev, V. I., Garipov, I. F., Smirnova, E. S., Peters, G. S., Ilina, K. B., Pisarevsky, Y. V., Alekseeva, O. A., & Kovalchuk, M. V. (2023). Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics. Crystals, 13(11), 1577. https://doi.org/10.3390/cryst13111577