Structural and Electronic Properties of Cu3InSe4
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, K.; Xia, Y.; Shen, J.; He, J.; Luo, Y.; Kanatzidis, M.G.; Wolverton, C. Accelerated Discovery of a Large Family of Quaternary Chalcogenides with Very Low Lattice Thermal Conductivity. Npj Comput. Mater. 2021, 7, 82. [Google Scholar] [CrossRef]
- Patschke, R.; Zhang, X.; Singh, D.; Schindler, J.; Kannewurf, C.R.; Lowhorn, N.; Tritt, T.; Nolas, G.S.; Kanatzidis, M.G. Thermoelectric Properties and Electronic Structure of the Cage Compounds A2BaCu8Te10 (A = K, Rb, Cs): Systems with Low Thermal Conductivity. Chem. Mater. 2001, 13, 613–621. [Google Scholar] [CrossRef]
- Qiu, P.; Shi, X.; Chen, L. Cu-Based Thermoelectric Materials. Energy Storage Mater. 2016, 3, 85–97. [Google Scholar] [CrossRef]
- Wei, K.; Beauchemin, L.; Wang, H.; Porter, W.D.; Martin, J.; Nolas, G.S. Enhanced Thermoelectric Properties of Cu2ZnSnSe4 with Ga-Doping. J. Alloys Compd. 2015, 650, 844–847. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Nolas, G.S. Synthesis and Thermoelectric Properties of Cu Excess Cu2 ZnSnSe4. Phys. Status Solidi-Rapid Res. Lett. 2014, 8, 61–64. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Nolas, G.S. Synthesis, Crystal Structure, and High Temperature Transport Properties of p-Type Cu2Zn1-XFexSnSe4. Inorg. Chem. 2013, 52, 14364–14367. [Google Scholar] [CrossRef]
- Pal, K.; Singh, P.; Bhaduri, A.; Thapa, K.B. Current Challenges and Future Prospects for a Highly Efficient (>20%) Kesterite CZTS Solar Cell: A Review. Sol. Energy Mater. Sol. Cells 2019, 196, 138–156. [Google Scholar] [CrossRef]
- Ravindiran, M.; Praveenkumar, C. Status Review and the Future Prospects of CZTS Based Solar Cell—A Novel Approach on the Device Structure and Material Modeling for CZTS Based Photovoltaic Device. Renew. Sustain. Energy Rev. 2018, 94, 317–329. [Google Scholar] [CrossRef]
- Nolas, G.S.; Hassan, M.S.; Dong, Y.; Martin, J. Synthesis, Crystal Structure and Electrical Properties of the Tetrahedral Quaternary Chalcogenides CuM2InTe4 (M = Zn, Cd). J. Solid State Chem. 2016, 242, 50–54. [Google Scholar] [CrossRef]
- Sahu, M.; Minnam Reddy, V.R.; Park, C.; Sharma, P. Review Article on the Lattice Defect and Interface Loss Mechanisms in Kesterite Materials and Their Impact on Solar Cell Performance. Sol. Energy 2021, 230, 13–58. [Google Scholar] [CrossRef]
- Denisov, D.V.; Tsendin, K.D. Application of Chalcogenides for Creation of New Superconductors. J. Optoelectron. Adv. Mater. 2003, 5, 1011–1016. [Google Scholar]
- Deguchi, K.; Takano, Y.; Mizuguchi, Y. Physics and Chemistry of Layered Chalcogenide Superconductors. Sci. Technol. Adv. Mater. 2012, 13, 054303. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, Y.; Takano, Y. Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor. J. Phys. Soc. Jpn. 2010, 79, 102001. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, D.; Ding, J.; Yao, Y. Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors. Phys. Rev. Lett. 2011, 106, 016402. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gong, X.G.; Duan, C.G.; Zhu, Z.Q.; Chu, J.H.; Walsh, A.; Yao, Y.G.; Ma, J.; Wei, S.H. Band Structure Engineering of Multinary Chalcogenide Topological Insulators. Phys. Rev. B-Condens. Matter Mater. Phys. 2011, 83, 245202. [Google Scholar] [CrossRef]
- Xing, C.; Lei, Y.; Liu, M.; Wu, S.; He, W.; Zheng, Z. Environment-Friendly Cu-Based Thin Film Solar Cells: Materials, Devices and Charge Carrier Dynamics. Phys. Chem. Chem. Phys. 2021, 23, 16469–16487. [Google Scholar] [CrossRef] [PubMed]
- Tsiba Matondo, J.; Malouangou Maurice, D.; Chen, Q.; Bai, L.; Guli, M. Inorganic Copper-Based Hole Transport Materials for Perovskite Photovoltaics: Challenges in Normally Structured Cells, Advances in Photovoltaic Performance and Device Stability. Sol. Energy Mater. Sol. Cells 2021, 224, 111011. [Google Scholar] [CrossRef]
- Suresh, S.; Uhl, A.R. Present Status of Solution-Processing Routes for Cu(In,Ga)(S,Se)2 Solar Cell Absorbers. Adv. Energy Mater. 2021, 11, 2003743. [Google Scholar] [CrossRef]
- Haque, E. Outstanding Thermoelectric Performance of MCu3X4(M = V, Nb, Ta; X = S, Se, Te) with Unaffected Band Degeneracy under Pressure. ACS Appl. Energy Mater. 2021, 4, 1942–1953. [Google Scholar] [CrossRef]
- Chen, K.; Du, B.; Bonini, N.; Weber, C.; Yan, H.; Reece, M.J. Theory-Guided Synthesis of an Eco-Friendly and Low-Cost Copper Based Sulfide Thermoelectric Material. J. Phys. Chem. C 2016, 120, 27135–27140. [Google Scholar] [CrossRef]
- Skoug, E.J.; Cain, J.D.; Morelli, D.T. High Thermoelectric Figure of Merit in the Cu3SbSe4-Cu3SbS4 Solid Solution. Appl. Phys. Lett. 2011, 98, 261911. [Google Scholar] [CrossRef]
- Ge, Z.H.; Salvador, J.R.; Nolas, G.S. Selective Synthesis of Cu2SnSe3 and Cu2SnSe4 Nanocrystals. Inorg. Chem. 2014, 53, 4445–4449. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, U.C.; Kühn, G. Phase Relations in the Ternary System Cu-In-Se. J. Mater. Sci. 1987, 22, 1635–1641. [Google Scholar] [CrossRef]
- Manolikas, C.; van Landuyt, J.; de Ridder, R.; Amelinckx, S. Electron Microscopic Study of the Domain Structure and of the Transition State in Cu0.5In2.5Se4. Phys. Status Solidi 1979, 55, 709–722. [Google Scholar] [CrossRef]
- Folmer, J.C.W.; Turner, J.A.; Noufi, R.; Cohen, D. Structural and Solar Conversion Characteristics of the (Cu2Se) x (In2Se3) 1 − x System. J. Electrochem. Soc. 1985, 132, 1319–1327. [Google Scholar] [CrossRef]
- Rockett, A.; Birkmire, R.W. CuInSe2 for Photovoltaic Applications. J. Appl. Phys. 1998, 70, R81. [Google Scholar] [CrossRef]
- Wang, K.; Qin, P.; Ge, Z.H.; Feng, J. Highly Enhanced Thermoelectric Properties of P-Type CuInSe2 Alloys by the Vacancy Doping. Scr. Mater. 2018, 149, 88–92. [Google Scholar] [CrossRef]
- Parlak, M.; Erçelebi, Ç.; Günal, I.; Özkan, H.; Gasanly, N.M.; Çulfaz, A. Crystal Data, Electrical Resisitivity and Mobility in Cu3In5Se9 and Cu3In5Te9 Single Crystals. Cryst. Res. Technol. 1997, 32, 395–400. [Google Scholar] [CrossRef]
- Rincón, C.; Wasim, S.M.; Marín, G.; Sánchez Pérez, G. Optical Absorption Spectra near the Fundamental Band Edge in Cu2In4Se7 Bulk Crystals. J. Appl. Phys. 2003, 93, 8939. [Google Scholar] [CrossRef]
- Merino, J.M.; Mahanty, S.; León, M.; Diaz, R.; Rueda, F.; Martin De Vidales, J.L. Structural Characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8 Compounds. Thin Solid Films 2000, 361–362, 70–73. [Google Scholar] [CrossRef]
- Takei, K.; Maeda, T.; Gao, F.; Yamazoe, S.; Wada, T. Crystallographic and Optical Properties of CuInSe2-ZnSe System. Jpn. J. Appl. Phys. 2014, 53, 05FW07. [Google Scholar] [CrossRef]
- Schorr, S.; Geandier, G. In-Situ Investigation of the Temperature Dependent Structural Phase Transition in CuInSe2 by Synchrotron Radiation. Cryst. Res. Technol. 2006, 41, 450–457. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, Q.; Huang, L.; Wang, G.; Pan, D.; Zhang, H.; He, X. Alloyed (ZnSe)x(CuInSe2)1-x and CuInSexS2-x Nanocrystals with a Monophase Zinc Blende Structure over the Entire Composition Range. Inorg. Chem. 2011, 50, 11958–11964. [Google Scholar] [CrossRef] [PubMed]
- Golovej, M.I.; Voroshilov, Y.V.; Potorii, M.V. Investigation of the System Cu(Ag,Tl)-B(V)-Se. Izv. Vyss. Uchebn. Zaved. Khim. Khim. Tekhnol. 1985, 28, 7. [Google Scholar]
- Fan, J.; Schnelle, W.; Antonyshyn, I.; Veremchuk, I.; Carrillo-Cabrera, W.; Shi, X.; Grin, Y.; Chen, L. Structural Evolvement and Thermoelectric Properties of Cu3−xSnxSe3 Compounds with Diamond-like Crystal Structures. Dalt. Trans. 2014, 43, 16788–16794. [Google Scholar] [CrossRef]
- Pfitzner, A. Crystal Structure of Tricopper Tetraselenoantimonate (V), Cu3SbSe4. Z. Fur Krist.-New Cryst. Struct. 1994, 209, 685. [Google Scholar] [CrossRef]
- Richard, V. Gaines Luzonite, Famatinite and Some Related Minerals. Am. Mineral. 1957, 42, 766–779. [Google Scholar]
- Wei, S.H.; Ferreira, L.G.; Zunger, A. First-Principles Calculation of the Order-Disorder Transition in Chalcopyrite Semiconductors. Phys. Rev. B 1992, 45, 2533. [Google Scholar] [CrossRef]
- Certain trade names and company products are mentioned in the text or identified in illustrations in order to adequately specify the experimental procedures and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology.
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1998, 105, 9982. [Google Scholar] [CrossRef]
- Cococcioni, M.; De Gironcoli, S. Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+U Method. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71, 035105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xi, L.; Wang, Y.; Zhang, J.; Zhang, P.; Zhang, W. Electronic Properties of Energy Harvesting Cu-Chalcogenides: P–d Hybridization and d-Electron Localization. Comput. Mater. Sci. 2015, 108, 239–249. [Google Scholar] [CrossRef]
- Hobbis, D.; Shi, W.; Popescu, A.; Wei, K.; Baumbach, R.E.; Wang, H.; Woods, L.M.; Nolas, G.S. Synthesis, Transport Properties and Electronic Structure of p-Type Cu1+: XMn2- XInTe4 (x = 0, 0.2, 0.3). Dalt. Trans. 2020, 49, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Roque Infante, E.; Delgado, J.M.; Lopez Rivera, S.A. Synthesis and Crystal Structure of Cu2FeSnSe4, a I2 II IV VI4 Semiconductor. Mater. Lett. 1997, 33, 67–70. [Google Scholar] [CrossRef]
- Knight, K.S. The Crystal Structures of CuInSe2 and CuInTe2. Mater. Res. Bull. 1992, 27, 161–167. [Google Scholar] [CrossRef]
- Hönle, W.; Kühn, G.; Neumann, H. Die Kristallstruktur von LiInSe2. Z. Für Anorg. Und Allg. Chem. 1986, 543, 161–168. [Google Scholar] [CrossRef]
- Pauling, L.; Hultgren, R. The Crystal Structure of Sulvanite, Cu3VS4. Z. Für Krist.-Cryst. Mater. 1933, 84, 204–212. [Google Scholar] [CrossRef]
- Van Arkel, A.E.; Crevecoeur, C. Quelques Sulfures et Séléniures Complexes. J. Less Common Met. 1963, 5, 177–180. [Google Scholar] [CrossRef]
- White-Drayton, K.; Liu, S.; Moeller, K.D.; Bhowmik, A.; Hansen, H.A.; Vegge, T.; Hui, Y.; Chang, R.; Koumpouras, K.; Larsson, J.A. Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF). J. Phys. Condens. Matter 2020, 32, 315502. [Google Scholar] [CrossRef]
- Espinosa-García, W.F.; Ruiz-Tobón, C.M.; Osorio-Guillén, J.M. The Elastic and Bonding Properties of the Sulvanite Compounds: A First-Principles Study by Local and Semi-Local Functionals. Phys. B Condens. Matter 2011, 406, 3788–3793. [Google Scholar] [CrossRef]
- Dong, Y.; Khabibullin, A.R.; Wei, K.; Ge, Z.-H.; Martin, J.; Salvador, J.R.; Woods, L.M.; Nolas, G.S. Synthesis, Transport Properties, and Electronic Structure of Cu2CdSnTe4. Appl. Phys. Lett. 2014, 104, 252107. [Google Scholar] [CrossRef]
- Room temperature resistivity (0.07 mΩ-cm) was determined by utilizing a custom-built device to measure small crystals employing a two-point probe method.
- Ali, M.A.; Jahan, N.; Islam, A.K.M.A. Sulvanite Compounds Cu3TMS4 (TM = V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties Using First-Principles Method. J. Sci. Res. 2015, 6, 407–419. [Google Scholar] [CrossRef]
- Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.Y.; Uǧur, S.; Uǧur, G.; Reshak, A.H.; Soyalp, F.; Omran, S.B. Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM = V, Nb and Ta) Sulvanite Compounds via First-Principles Calculations. Sci. Adv. Mater. 2013, 5, 97–106. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.Y.; Zhang, M.; Radu, D.R. Cascade Synthesis and Optoelectronic Applications of Intermediate Bandgap Cu3VSe4 Nanosheets. Sci. Rep. 2020, 10, 21679. [Google Scholar] [CrossRef] [PubMed]
- Syu, W.J.; Hsu, R.Y.; Lin, Y.C. Growth and Photovoltaic Device Using Cu3VS4 Films Prepared via Co-Sputtering from Cu–V and V Targets. Mater. Chem. Phys. 2022, 277, 125547. [Google Scholar] [CrossRef]
Empirical formula | Cu3InSe4 |
Formula weight | 621.32 |
Temperature | 100(2) K |
Wavelength | 0.49594 Å |
Crystal system | Cubic |
Space group | (No. 215) |
Unit cell dimension | a = 5.7504(2) |
Volume | 190.15(2) Å3 |
Z | 1 |
Density (calculated) | 5.426 mg/m3 |
Absorption coefficient | 11.36 mm−1 |
Crystal size | 30 × 20 × 10 µm3 |
Theta range for data collection | 2.283 to 26.223° |
Reflections collected | 2237 |
Independent reflections | 251 [R(int) = 0.0945] |
Goodness-of-fit on F2 | 1.190 |
Final R indices [I > 2σ(I)] | R1 = 0.0375, wR2 = 0.0886 |
R indices (all data) | R1 = 0.0403, wR2 = 0.0908 |
Atom | Site | x | y | z | Ueq |
---|---|---|---|---|---|
In | 1b | 1/2 | 1/2 | 1/2 | 0.009(1) |
Se | 4e | 0.2412(1) | 0.2412(1) | 0.2412(1) | 0.011(1) |
Cu | 3d | 0 | 0 | 1/2 | 0.007(1) |
U11 | U22 | U33 | U23 | U13 | U12 | |
---|---|---|---|---|---|---|
In | 0.010(1) | 0.010(1) | 0.010(1) | 0 | 0 | 0 |
Se | 0.011(1) | 0.011(1) | 0.011(1) | −0.002(1) | −0.002(1) | −0.002(1) |
Cu | 0.007(1) | 0.007(1) | 0.006(1) | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, O.P.; Wong-Ng, W.; Chang, T.; Chen, Y.-S.; Nolas, G.S. Structural and Electronic Properties of Cu3InSe4. Crystals 2022, 12, 1310. https://doi.org/10.3390/cryst12091310
Ojo OP, Wong-Ng W, Chang T, Chen Y-S, Nolas GS. Structural and Electronic Properties of Cu3InSe4. Crystals. 2022; 12(9):1310. https://doi.org/10.3390/cryst12091310
Chicago/Turabian StyleOjo, Oluwagbemiga P., Winnie Wong-Ng, Tieyan Chang, Yu-Sheng Chen, and George S. Nolas. 2022. "Structural and Electronic Properties of Cu3InSe4" Crystals 12, no. 9: 1310. https://doi.org/10.3390/cryst12091310
APA StyleOjo, O. P., Wong-Ng, W., Chang, T., Chen, Y. -S., & Nolas, G. S. (2022). Structural and Electronic Properties of Cu3InSe4. Crystals, 12(9), 1310. https://doi.org/10.3390/cryst12091310