Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing
Abstract
:1. Introduction
2. Main Conformational Switch Biosensing Readouts
2.1. Optical Read-Out
2.2. Electrochemical Read-Out
2.3. Coupled Read-Out
3. Main Conformational Switch Case Studies
3.1. Protein-Based Switch Biosensing
3.2. DNA Nanomachines
3.3. Structure-Switching Aptamers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plaxco, K.W.; Tom Soh, H. Switch-based biosensors: A new approach towards real-time; in vivo molecular detection. Trends Biotechnol. 2011, 29, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Staiano, M.; Sapio, M.; Scognamiglio, V.; Marabotti, A.; Facchiano, A.M.; Bazzicalupo, P.; Rossi, M.; D’Auria, S. A Thermostable Sugar-Binding Protein from the Archaeon Pyrococcus horikoshii as a Probe for the Development of a Stable Fluorescence Biosensor for Diabetic Patients. Biotechnol. Prog. 2004, 20, 1572–1577. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, V.; Aurilia, V.; Cennamo, N.; Ringhieri, P.; Iozzino, L.; Tartaglia, M.; Staiano, M.; Ruggiero, G.; Orlando, P.; Labella, T.; et al. D-galactose/D-glucose-binding Protein from Escherichia coli as Probe for a Non-consuming Glucose Implantable Fluorescence Biosensor. Sensors 2007, 7, 2484–2491. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Feng, X.; Gao, T.; Liu, G.; Mao, Y.; Lin, J.; Yu, X.; Luo, X. Aptamer induced multicoloured Au NCs-MoS2 “switch on” fluorescence resonance energy transfer biosensor for dual color simultaneous detection of multiple tumor markers by single wavelength excitation. Anal. Chim. Acta 2017, 983, 173–180. [Google Scholar] [CrossRef]
- Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018, 117, 75–83. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wang, Q.; Gao, F.; Ni, J.; Liao, X.; Zhang, X.; Lin, Z. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment. Sci. Rep. 2016, 6, 22441. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Reagentless and reusable electrochemical affinity biosensors for near real-time and/or continuous operation. Advances and prospects. Curr. Opin. Electrochem. 2019, 16, 35–41. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, J.; Zheng, T.; Yang, Z.; Chai, Y.; Chen, S.; Yuan, R.; Xu, W. Highly sensitive electrochemical assay for Nosema bombycis gene DNA PTP1 via conformational switch of DNA nanostructures regulated by H+ from LAMP. Biosens. Bioelectron. 2018, 106, 186–192. [Google Scholar] [CrossRef]
- Xie, S.; Yuan, W.; Wang, P.; Tang, Y.; Teng, L.; Peng, Q. Target-induced conformational switch of DNAzyme for homogeneous electrochemical detection of nereistoxin-related insecticide on an ultramicroelectrode. Sens. Actuators B Chem. 2019, 292, 64–69. [Google Scholar] [CrossRef]
- Hu, M.; Yang, H.; Li, Z.; Zhang, L.; Zhu, P.; Yan, M.; Yu, J. Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens. Bioelectron. 2020, 147, 111786. [Google Scholar] [CrossRef]
- Geng, W.; Yang, R. A triple-helix molecular switch photoelectrochemical biosensor for ultrasensitive microRNA detection based on position-controllable CdS//CdTe signal enhancement and switching. Chem. Commun. 2020, 56, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, J.; Zhang, Y.; Yan, M.; Zhang, L.; Ge, S.; Yu, J. Photoelectrochemical biosensor of HIV-1 based on cascaded photoactive materials and triple-helix molecular switch. Biosens. Bioelectron. 2019, 139, 111325. [Google Scholar] [CrossRef] [PubMed]
- Kun, Q.; Lin, Y.; Peng, H.; Cheng, L.; Cui, H.; Hong, N.; Xiong, J.; Fan, H. A “signal-on” switch electrochemiluminescence biosensor for the detection of tumor cells. J. Electroanal. Chem. 2018, 808, 101–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Zhuo, Y.; Chai, Y.; Yuan, R. Highly Efficient Electrochemiluminescent Silver Nanoclusters/Titanium Oxide Nanomaterials as a Signal Probe for Ferrocene-Driven Light Switch Bioanalysis. Anal. Chem. 2017, 89, 3732–3738. [Google Scholar]
- Zhuo, Y.; Wang, H.-J.; Lei, Y.-M.; Zhang, P.; Liu, J.-L.; Chai, Y.-Q.; Yuan, R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018, 143, 3230–3248. [Google Scholar] [CrossRef]
- Gao, X.; Li, H.; Zhao, Y.; Jie, G. Triple-helix molecular switch-based versatile “off-on” electrochemiluminescence and fluorescence biosensing platform for ultrasensitive detection of lipopolysaccharide by multiple-amplification strategy. Biosens. Bioelectron. 2019, 143, 111602. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Amarelle, V.; Ribeiro, L.F.C.; Guazzaroni, M.-E. Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion. BioMed Res. Int. 2019, 2019, e4798793. [Google Scholar] [CrossRef]
- Kuznetsova, I.M.; Stepanenko, O.V.; Turoverov, K.K.; Staiano, M.; Scognamiglio, V.; Rossi, M.; D’Auria, S. Fluorescence Properties of Glutamine-Binding Protein from Escherichia coli and Its Complex with Glutamine. J. Proteome Res. 2005, 4, 417–423. [Google Scholar] [CrossRef]
- D’Auria, S.; Scognamiglio, V.; Rossi, M.; Staiano, M.; Campopiano, S.; Cennamo, N.; Zeni, L. Odor binding protein as probe for a refractive index-based biosensor: New perspectives in biohazard assessment; in: Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies. SPIE 2004, 5321, 258–264. [Google Scholar]
- Herman, P.; Vecer, J.; Barvik, I., Jr.; Scognamiglio, V.; Staiano, M.; de Champdoré, M.; Varriale, A.; Rossi, M.; D’Auria, S. The role of calcium in the conformational dynamics and thermal stability of the D-galactose/D-glucose-binding protein from Escherichia coli. Proteins Struct. Funct. Bioinform. 2005, 61, 184–195. [Google Scholar] [CrossRef]
- D’Auria, S.; Ausili, A.; Marabotti, A.; Varriale, A.; Scognamiglio, V.; Staiano, M.; Bertoli, E.; Rossi, M.; Tanfani, F. Binding of Glucose to the d-Galactose/d-Glucose–Binding Protein from Escherichia coli Restores the Native Protein Secondary Structure and Thermostability That Are Lost upon Calcium Depletion. J. Biochem. 2006, 139, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, V.; Scirè, A.; Aurilia, V.; Staiano, M.; Crescenzo, R.; Palmucci, C.; Bertoli, E.; Rossi, M.; Tanfani, F.; D’Auria, S. A Strategic Fluorescence Labeling of d-Galactose/d-Glucose-Binding Protein from Escherichia coli Helps to Shed Light on the Protein Structural Stability and Dynamics. J. Proteome Res. 2007, 6, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.A.; Hellinga, H.W. Periplasmic binding proteins: A versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 2004, 14, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Salins, L.L.E.; Shrestha, S.; Daunert, S. Fluorescent Biosensing Systems Based on Analyte-Induced Conformational Changes of Genetically Engineered Periplasmic Binding Proteins; in: Chemical and Biological Sensors for Environmental Monitoring. Am. Chem. Soc. 2000, 762, 87–101. [Google Scholar]
- De Stefano, L.; Rotiroti, L.; Rendina, I.; Moretti, L.; Scognamiglio, V.; Rossi, M.; D’Auria, S. Porous silicon-based optical microsensor for the detection of l-glutamine. Biosens. Bioelectron. 2006, 21, 1664–1667. [Google Scholar] [CrossRef]
- D’Auria, S.; Staiano, M.; Varriale, A.; Scognamiglio, V.; Rossi, M.; Parracino, A.; Campopiano, S.; Cennamo, N.; Zeni, L. The Odorant-Binding Protein from Canis familiaris: Purification; Characterization and New Perspectives in Biohazard Assessment. Protein Pept. Lett. 2006, 13, 349–352. [Google Scholar] [CrossRef]
- De Stefano, L.; Rossi, M.; Staiano, M.; Mamone, G.; Parracino, A.; Rotiroti, L.; Rendina, I.; Rossi, M.; D’Auria, S. Glutamine-Binding Protein from Escherichia coli Specifically Binds a Wheat Gliadin Peptide Allowing the Design of a New Porous Silicon-Based Optical Biosensor. J. Proteome Res. 2006, 5, 1241–1245. [Google Scholar] [CrossRef]
- Sharma, B.V.; Shrestha, S.S.; Deo, S.K.; Daunert, S. Biosensors Based on Periplasmic Binding Proteins, in: Fluorescence Sensors and Biosensors; CRC Press/Taylor & Francis Group: Raton, FL, USA, 2006; pp. 45–65. [Google Scholar]
- D’Auria, S.; Scirè, A.; Varriale, A.; Scognamiglio, V.; Staiano, M.; Ausili, A.; Marabotti, A.; Rossi, M.; Tanfani, F. Binding of glutamine to glutamine-binding protein from Escherichia coli induces changes in protein structure and increases protein stability. Proteins Struct. Funct. Bioinform. 2005, 58, 80–87. [Google Scholar] [CrossRef]
- Staiano, M.; Scognamiglio, V.; Rossi, M.; D’Auria, S.; Stepanenko, O.V.; Kuznetsova, I.M.; Turoverov, K.K. Unfolding and Refolding of the Glutamine-Binding Protein from Escherichia coli and Its Complex with Glutamine Induced by Guanidine Hydrochloride. Biochemistry 2005, 44, 5625–5633. [Google Scholar] [CrossRef]
- Herman, P.; Vecer, J.; Scognamiglio, V.; Staiano, M.; Rossi, M.; D’Auria, S. A Recombinant Glutamine-Binding Protein from Escherichia coli: Effect of Ligand-Binding on Protein Conformational Dynamics. Biotechnol. Prog. 2004, 20, 1847–1854. [Google Scholar] [CrossRef]
- Donaldson, T.; Iozzino, L.; Deacon, L.J.; Billones, H.; Ausili, A.; D’Auria, S.; Dattelbaum, J.D. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. Anal. Biochem. 2017, 525, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Léger, C.; Yahia-Ammar, A.; Susumu, K.; Medintz, I.L.; Urvoas, A.; Valerio-Lepiniec, M.; Minard, P.; Hildebrandt, N. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS Nano 2020, 14, 5956–5967. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Fu, X.; Wang, Q.; Sheng, L.; Huang, X.; Ma, M.; Cai, Z. Fluorescence switch biosensor based on quantum dots and gold nanoparticles for discriminative detection of lysozyme. Int. J. Biol. Macromol. 2017, 103, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Angell, C.; Kai, M.; Xie, S.; Dong, X.; Chen, Y. Bioderived DNA Nanomachines for Potential Uses in Biosensing; Diagnostics; and Therapeutic Applications. Adv. Healthc. Mater. 2018, 7, 1701189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lai, M.; Zuehlke, A.; Peng, H.; Li, X.-F.; Le, X.C. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. Angew. Chem. Int. Ed. 2015, 54, 14326–14330. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Wang, H.; Zhuo, Y.; Yuan, R.; Chai, Y. DNA nanomachine-based regenerated sensing platform: A novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale 2017, 9, 2310–2316. [Google Scholar] [CrossRef]
- Chen, X.; Xu, K.; Li, J.; Yang, M.; Li, X.; Chen, Q.; Lu, C.; Yang, H. Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens. Bioelectron. 2020, 155, 112104. [Google Scholar] [CrossRef]
- Xiong, E.; Li, Z.; Zhang, X.; Zhou, J.; Yan, X.; Liu, Y.; Chen, J. Triple-Helix Molecular Switch Electrochemical Ratiometric Biosensor for Ultrasensitive Detection of Nucleic Acids. Anal. Chem. 2017, 89, 8830–8835. [Google Scholar] [CrossRef]
- Guo, J.; Feng, C.; Liu, Z.; Ye, B.; Li, G.; Zou, L. A label-free electrochemical biosensor based on novel DNA nanotweezer coupled with G-quadruplex for sensitive DNA detection. Sens. Actuators B Chem. 2021, 331, 129437. [Google Scholar] [CrossRef]
- Munzar, J.D.; Ng, A.; Juncker, D. Duplexed aptamers: History; design; theory; and application to biosensing. Chem. Soc. Rev. 2019, 48, 1390–1419. [Google Scholar] [CrossRef]
- Feagin, T.A.; Maganzini, N.; Soh, H.T. Strategies for Creating Structure-Switching Aptamers. ACS Sens. 2018, 3, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Lackey, H.H.; Peterson, E.M.; Harris, J.M.; Heemstra, J.M. Probing the Mechanism of Structure-Switching Aptamer Assembly by Super-Resolution Localization of Individual DNA Molecules. Anal. Chem. 2020, 92, 6909–6917. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shen, S.; Lau, C.; Lu, J. A conformational switch-based fluorescent biosensor for homogeneous detection of telomerase activity. Talanta 2019, 199, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Ning, G.; Mao, S.; Wu, Y.; Wu, S.; Liu, G.-Q. G-quadruplex-bridged triple-helix aptamer probe strategy: A label-free chemiluminescence biosensor for ochratoxin A. Sens. Actuators B Chem. 2019, 298, 126867. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Zhang, Q.; Brennan, J.D.; Li, Y. Biosensing by Tandem Reactions of Structure Switching; Nucleolytic Digestion; and DNA Amplification of a DNA Assembly. Angew. Chem. Int. Ed. 2015, 54, 9637–9641. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, Z.; Chen, H.; Tian, Y.; Zhou, N. A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch. Sens. Actuators B Chem. 2021, 326, 128842. [Google Scholar] [CrossRef]
- Bissonnette, S.; Del Grosso, E.; Simon, A.J.; Plaxco, K.W.; Ricci, F.; Vallée-Bélisle, A. Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sens. 2020, 5, 1937–1942. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scognamiglio, V.; Antonacci, A. Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing. Crystals 2022, 12, 1209. https://doi.org/10.3390/cryst12091209
Scognamiglio V, Antonacci A. Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing. Crystals. 2022; 12(9):1209. https://doi.org/10.3390/cryst12091209
Chicago/Turabian StyleScognamiglio, Viviana, and Amina Antonacci. 2022. "Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing" Crystals 12, no. 9: 1209. https://doi.org/10.3390/cryst12091209