Effects of Sc Microalloying on Microstructure and Properties of As-Extruded Al-5Mg Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. EBSD Analysis and Grain Boundary Strengthening
3.2. XRD Analysis and Dislocation Strengthening
3.3. Mechanical Property
4. Conclusions
- (1)
- Partial recrystallization was observed in alloy 2 with 0.2% Sc content, resulting in a structure consisting of 21.8% equiaxed recrystallized structure and 78.2% fine banding structure. The grain size of alloy 2 is about 5.31 μm, which is 83.3% finer than that of alloy 1 without Sc;
- (2)
- The addition of Sc leads to an increase in grain boundary strengthening and dislocation strengthening in alloy 2, reaching 103.59 MPa and 41.85 MPa, respectively;
- (3)
- Alloy 2 with Sc has a higher tensile strength of 380.7 MPa, which is 34.1% higher than that of alloy 1, but alloy 2 has a 46.2% reduction in elongation compared to alloy 1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K.; Gao, T.; Yang, H.; Hu, K.; Liu, G.; Sun, Q.; Nie, J.; Liu, X. Enhanced grain refinement and mechanical properties of a high–strength Al–Zn–Mg–Cu–Zr alloy induced by TiC nano–particles. Mater. Sci. Eng. 2021, 806, 140852. [Google Scholar] [CrossRef]
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys. Acta Mater. 2010, 58, 248–260. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Yu-Gang, L.I.; Geng, J.W.; Hong-Ping, L.I.; Wang, H.W. Effects of nano-sized TiB2 particles and Al3Zr dispersoids on microstructure and mechanical properties of Al–Zn–Mg–Cu based materials. Trans. Nonferrous Met. Soc. China 2021, 31, 2189–2207. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, A.; Zhao, Y.; Shan, J.; Liu, X. Effects of Al-Mg wire replacing Al-Cu wire on the properties of 2219 aluminum alloy TIG-welded joint. Int. J. Mod. Phys. B 2021, 35, 2150139. [Google Scholar] [CrossRef]
- Li, S.; Dong, H.; Shi, L.; Li, P.; Ye, F. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld. Corros. Sci. 2017, 123, 243–255. [Google Scholar] [CrossRef]
- Qu, Z.; Han, T.; Cui, H.; Tang, X. A Comparison between Tungsten Inert Gas Welded Joints Welded by Commercial ER5183 Filler and Al–Mg–Zn–Sc–Zr–Mn Filler on Microstructure and Properties in 7075-T651 Aluminum Alloys. Mater. Trans. 2021, 62, 386–395. [Google Scholar] [CrossRef]
- Sidelnikov, S.; Samchuk, A.; Voroshilov, D.; Gorbunov, Y.; Bespalov, V. Computer Modeling and Analysis of the Energy-Power Process Parameters of the Combined Machining of Alloys Al-Mg System. Key Eng. Mater. 2019, 805, 25–30. [Google Scholar] [CrossRef]
- Murali, N.; Sokoluk, M.; Li, X. Study on aluminum alloy joints welded with nano-treated Al-Mg-Mn filler wire. Mater. Lett. 2021, 283, 128739. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, B.H.; Lee, D.B.; Yang, S.Y.; Kim, N.S.; Ha, S.H.; Yoon, Y.O.; Lim, H.K.; Kim, S.K. Intergranular Corrosion and Microstructural Evolution in a Newly Designed Al-6Mg Alloy. Materials 2021, 14, 3314. [Google Scholar] [CrossRef]
- Vaishnavan, S.S.; Jayakumar, K. Performance analysis of TIG welded dissimilar aluminium alloy with scandium added ER5356 filler rods. J. Chin. Inst. Eng. 2021, 44, 718–725. [Google Scholar] [CrossRef]
- Adachi, H.; Osamura, K.; Kikuchi, K.; Kusui, J. Effect of Zr addition on dynamic recrystallization during hot extrusion in Al alloys. Mater. Trans. 2005, 46, 211–214. [Google Scholar] [CrossRef][Green Version]
- Lee, S.L.; Chiu, Y.C.; Pan, T.A.; Chen, M.C. Effects of Trace Amounts of Mn, Zr and Sc on the Recrystallization and Corrosion Resistance of Al-5Mg Alloys. Crystals 2021, 11, 926. [Google Scholar] [CrossRef]
- Xian-Ming, C.; Cheng-Ping, L.; Qing-Lin, P.; Zhi-Ming, Y. Effects of micro-alloying with Sc and Mn on microstructure and mechanical properties of Al-Mg based alloys. Trans. Nonferrous Met. Soc. China 2005, 15, 1108–1112. [Google Scholar]
- Xu, Y.; Nagaumi, H.; Han, Y.; Zhang, G.; Zhai, T. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment. Metall. Mater. Trans. A 2017, 48, 1355–1365. [Google Scholar] [CrossRef]
- Zhu, H.L.; Dargusch, M.S. Effect of Zr Addition on Microstructure and Warm Formability of Al-Mg Sheet Alloys. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2010; Volume 654–656, pp. 1010–1013. [Google Scholar]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Y.A.; Yelagin, V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Forbord, B.; Hallem, H.; Royset, J.; Marthinsen, K. Thermal stability of Al_3(Sc_x,Zr_(1-x))-dispersoids in extruded aluminium alloys. Mater. Sci. Eng. A 2008, 475, 241–248. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Z.; Bai, Y.; Li, S.; Mao, W. Study on Sc Microalloying and Strengthening Mechanism of Al-Mg Alloy. Crystals 2022, 12, 673. [Google Scholar] [CrossRef]
- Zhu, H.; Dahle, A.K.; Ghosh, A.K. Effect of Sc and Zn Additions on Microstructure and Hot Formability of Al-Mg Sheet Alloys. Metall. Mater. Trans. A 2009, 40, 598–608. [Google Scholar] [CrossRef]
- Son, H.W.; Lee, J.C.; Cho, C.H.; Hyun, S.K. Effect of Mg content on the dislocation characteristics and discontinuous dynamic recrystallization during the hot deformation of Al-Mg alloy. J. Alloys Compd. 2021, 887, 161397. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Li, F. Effect of Zr addition and heat treatment on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Heat Treat. Met. 2018, 43, 27–30. [Google Scholar]
- Cabibbo, M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys. Mater. Sci. Eng. A 2013, 560, 413–432. [Google Scholar] [CrossRef]
- Ryen, y.; Holmedal, B.; Nijs, O.; Nes, E.; SjöLander, E.; EkströM, H.E. Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 2006, 37, 1999–2006. [Google Scholar] [CrossRef]
- Luo, P.; Mcdonald, D.T.; Xu, W.; Palanisamy, S.; Dargusch, M.S.; Xia, K. A modified Hall-Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scr. Mater. 2012, 66, 785–788. [Google Scholar] [CrossRef]
- Krasilnikov, N.; Lojkowski, W.; Pakiela, Z.; Valiev, R. Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mater. Sci. Eng. A 2005, 397, 330–337. [Google Scholar] [CrossRef]
- Youssef, K.M.; Scattergood, R.O.; Murty, K.L.; Koch, C.C. Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 2006, 54, 251–256. [Google Scholar] [CrossRef]
- Cardoso, E.K.; Guido, V.; Silva, G.; Filho, W.B.; Junior, A.J. Microstructural evolution of AA7050 al alloy processed by ECAP. Matéria 2010, 15, 291–298. [Google Scholar] [CrossRef]
- Xiao-Jing, X.; Jin-Qi, C.; Xiao-Nong, C.; Ji-Ping, M. Tensile properties of 2024 Al alloy processed by enhanced solid-solution and equal-channel angular pressing. J. Jiangsu Univ. 2006, 16, 1541–1544. [Google Scholar]
- Jiang, J.; Jiang, F.; Huang, H.; Zhang, M.; Tang, Z.; Tong, M. Hot deformation analysis and microstructure evolution of Al–Mg–Mn-Sc-Zr alloy by isothermal compression. J. Alloy Compd. 2021, 858, 157655. [Google Scholar] [CrossRef]
- Suh, D.W.; Lee, S.Y.; Lee, K.H.; Lim, S.K.; Oh, K.H. Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments. J. Mater. Processing Technol. 2004, 155–156, 1330–1336. [Google Scholar] [CrossRef]
- Su, D.; Zhang, J.; Wang, B. The microstructure and weldability in welded joints for AA 5356 aluminum alloy after adding modified trace amounts of Sc and Zr. J. Manuf. Processes 2020, 57, 488–498. [Google Scholar] [CrossRef]
- Kim, J.H.; Jin, H.K.; Yeom, J.T.; Lee, D.G.; Su, G.L.; Park, N.K. Effect of scandium content on the hot extrusion of Al–Zn–Mg–(Sc) alloy. J. Mater. Processing Technol. 2007, 187, 635–639. [Google Scholar] [CrossRef]
- Lee, S.; Utsunomiya, A.; Akamatsu, H.; Neishi, K.; Furukawa, M.; Horita, Z.; Langdon, T.G. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater. 2002, 50, 553–564. [Google Scholar] [CrossRef]
Element | Mg | Mn | Cr | Ti | Sc | Si | Fe | Al |
---|---|---|---|---|---|---|---|---|
Alloy 1 | 4.98 | 0.167 | 0.065 | 0.110 | - | 0.0111 | <0.0001 | Bal. |
Alloy 2 | 5.02 | 0.166 | 0.067 | 0.112 | 0.2 | 0.0116 | <0.0001 | Bal. |
Recrystallization/% | Substructure/% | Deformed Structure/% | /μm | |
---|---|---|---|---|
Alloy 1 | 74.3 | 18.5 | 5.9 | 31.75 |
Alloy 2 | 21.8 | 44.3 | 33.9 | 5.31 |
High Angle Grain Boundary | Low Angle Grain Boundary | Average Grain Boundary Angle | |||
---|---|---|---|---|---|
° | ° | /° | |||
Alloy 1 | 0.938 | 41.09 | 0.062 | 8.66 | 39.07 |
Alloy 2 | 0.472 | 40.19 | 0.528 | 5.17 | 21.70 |
Parameter | /nm | /nm | /GPa | |||
---|---|---|---|---|---|---|
Value | 0.286 | 0.154056 | 3.06 | 0.24 | 26 | 0.17 |
Alloy 1 | 9.60 | 29.22 |
Alloy 2 | 52.91 | 50.68 |
/nm | /m−2 | |||
---|---|---|---|---|
Alloy 1 | 73.01 | 1.459 × 10−4 | 0.242 × 1014 | 26.86 |
Alloy 2 | 49.97 | 2.435 × 10−4 | 0.590 × 1014 | 41.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Zhang, Z.; Wang, Y.; Bai, Y.; Mao, W. Effects of Sc Microalloying on Microstructure and Properties of As-Extruded Al-5Mg Alloy. Crystals 2022, 12, 939. https://doi.org/10.3390/cryst12070939
Jiang L, Zhang Z, Wang Y, Bai Y, Mao W. Effects of Sc Microalloying on Microstructure and Properties of As-Extruded Al-5Mg Alloy. Crystals. 2022; 12(7):939. https://doi.org/10.3390/cryst12070939
Chicago/Turabian StyleJiang, Long, Zhifeng Zhang, Yabao Wang, Yuelong Bai, and Weimin Mao. 2022. "Effects of Sc Microalloying on Microstructure and Properties of As-Extruded Al-5Mg Alloy" Crystals 12, no. 7: 939. https://doi.org/10.3390/cryst12070939
APA StyleJiang, L., Zhang, Z., Wang, Y., Bai, Y., & Mao, W. (2022). Effects of Sc Microalloying on Microstructure and Properties of As-Extruded Al-5Mg Alloy. Crystals, 12(7), 939. https://doi.org/10.3390/cryst12070939