Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Crystalline CaMoO4 and CaMoO4:RE3+ Phosphors via Co-Precipitation
2.2. Fabricated Flexible Composite for an LED
2.3. Characterization
3. Results and Discussion
3.1. Characteristics of SrMoO4 and Single-Doped SrMoO4
3.2. Characteristics of [Eu3+]/[Tb3+] Co-Doped SrMoO4
3.3. Fabricated Flexible Composite for LED Filter
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, H.; Matsushima, Y. Investigation on Luminescent Properties of Rare Earth Doped Mullite Phosphors and the Occupation Site of the Doped Rare Earths. J. Electrochem. Soc. 2019, 166, B3209–B3217. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Yu, J.; Bu, Y.; Marques-Hueso, J.; Yan, X. Morphology control, spectrum modification and extended optical applications of rare earth ion doped phosphors. Phys. Chem. Chem. Phys. 2020, 22, 15120–15162. [Google Scholar] [CrossRef] [PubMed]
- Secu, M.; Secu, C.; Bartha, C. Optical Properties of Transparent Rare-Earth Doped Sol-Gel Derived Nano-Glass Ceramics. Materials 2021, 14, 6871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, T.; Zhang, Q.; Wang, X.; Yin, J.; Song, M.; Guo, X. First-principles study on electronic structures of BaWO4 crystals containing F-type color centers. J. Phys. Chem. Solids 2008, 69, 1815–1819. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Zhang, Y.; Hou, W.; Wu, X.; Xu, S. Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals. Mater. Lett. 2009, 63, 325–327. [Google Scholar] [CrossRef]
- Maia, A.S.; Stefani, R.; Kodaira, C.A.; Felinto, M.C.F.C.; Teotonio, E.E.S.; Brito, H.F. Luminescent nanoparticles of MgAl2O4:Eu,Dy prepared by citrate sol–gel method. Opt. Mater. 2008, 31, 440–444. [Google Scholar] [CrossRef]
- Jain, U.K. Structural and Photoluminescence Characterization of MgAl2O4:Eu Phosphor Synthesized by Combustion Method. Int. J. Adv. Res. 2017, 5, 1887–1890. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yang, J.; Wang, X.; Gan, S.; Li, L. Solvent directed morphologies and enhanced luminescent properties of BaWO4:Tm3+,Dy3+ for white light emitting diodes. Solid State Sci. 2018, 79, 85–92. [Google Scholar] [CrossRef]
- Botelho, G.; Nogueira, I.C.; Moraes, E.; Longo, E. Study of structural and optical properties of CaMoO4 nanoparticles synthesized by the microwave-assisted solvothermal method. Mater. Chem. Phys. 2016, 183, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.K.F.; Oliveira, M.C.; Gracia, L.; Tranquilin, R.L.; Paskocimas, C.A.; Motta, F.V.; Longo, E.; Andrés, J.; Bomio, M.R.D. Experimental and theoretical study to explain the morphology of CaMoO4 crystals. J. Phys. Chem. Solids 2018, 114, 141–152. [Google Scholar] [CrossRef]
- Kim, M.; Huh, Y. Synthesis and optical properties of CaMoO4:Eu3+, Na+ nanophosphors and a transparent CaMoO4:Eu3+, Na+ suspension. Opt. Mater. 2012, 35, 263–267. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Tao, J.; Zhu, X.; Zhou, J.; Zhao, Z.; Xie, L.; Tian, H. Low temperature synthesis of CaMoO4 nanoparticles. Ceram. Int. 2007, 33, 693–695. [Google Scholar] [CrossRef]
- Luo, Z.; Li, H.; Shu, H.; Wang, K.; Xia, J.; Yan, Y. Synthesis of BaMoO4 Nestlike Nanostructures Under a New Growth Mechanism. Cryst. Growth Des. 2008, 8, 2275–2281. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, D. Synthesis and Luminescence Properties of BaMoO4:Sm3+ Phosphors. J. Am. Ceram. Soc. 2010, 93, 1397–1401. [Google Scholar] [CrossRef]
- Ryu, Y.; Kim, K. Synthesis of Hierachical Self-Assembled BaMoO4 Microcrystals. Bull. Korean Chem. Soc. 2008, 29, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Lam, R.U.E.; Blasse, G. Luminescence of barium molybdate (BaMoO4). J. Chem. Phys. 1979, 71, 3549. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, S.; Wang, Y.; Xu, M.; Lu, C.; Xiao, L.; Deng, S. Controlled synthesis and luminescence properties of CaMoO4:Eu3+ microcrystals. Opt. Mater. 2018, 77, 13–18. [Google Scholar] [CrossRef]
- Du, P.; Yu, J.S. Photoluminescence and cathodoluminescence properties of Eu3+ ions activated AMoO4 (A=Mg, Ca, Sr, Ba) phosphors. Mater. Res. Bull. 2015, 70, 553–558. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Guan, L.; Guo, Q. A new yellowish green luminescent material SrMoO4:Tb3. Mater. Lett. 2009, 63, 1096–1098. [Google Scholar] [CrossRef]
- Jung, J.Y.; Shim, Y.; Son, C.S.; Kim, Y.; Hwang, D. Boron Nitride Nanoparticle Phosphors for Use in Transparent Films for Deep-UV Detection and White Light-Emitting Diodes. ACS Appl. Nano Mater. 2021, 4, 3529–3536. [Google Scholar] [CrossRef]
- Kehl, W.L.; Hay, R.G.; Wahl, D. The Structure of Tetragonal Tungsten Trioxide. J. Appl. Phys. 1952, 23, 212–215. [Google Scholar] [CrossRef]
- Thongtem, T.; Kungwankunakorn, S.; Kuntalue, B.; Phuruangrat, A.; Thongtem, S. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. J. Alloy. Compd. 2010, 506, 475–481. [Google Scholar] [CrossRef]
- Kaur, P.; Khanna, A.; Singh, M.N.; Sinha, A.K. Structural and optical characterization of Eu and Dy doped CaWO4 nanoparticles for white light emission. J. Alloy. Compd. 2020, 834, 154804. [Google Scholar] [CrossRef]
- Jung, J.; Baek, Y.; Lee, J.; Kim, Y.; Cho, S.; Kim, Y. The structure and luminescence of boron nitride doped with Ce ions. Appl. Phys. A 2018, 124, 628. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kim, J.; Kim, Y.D.; Kim, Y.; Cha, H.; Lee, J.; Son, C.S.; Hwang, D. Enhanced Crystallinity and Luminescence Characteristics of Hexagonal Boron Nitride Doped with Cerium Ions According to Tempering Temperatures. Materials 2021, 14, 193. [Google Scholar] [CrossRef]
- He, K.; Chen, N.; Wang, C.; Wei, L.; Chen, J. Method for Determining Crystal Grain Size by X-Ray Diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Krishna Bharat, L.; Lee, S.H.; Yu, J.S. Synthesis, structural and optical properties of BaMoO4:Eu3+ shuttle like phosphors. Mater. Res. Bull. 2014, 53, 49–53. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Sczancoski, J.C.; Tranquilin, R.L.; Varela, J.A.; Longo, E.; Orlandi, M.O. Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling. Particuology 2009, 7, 353–362. [Google Scholar] [CrossRef]
- Joos, J.J.; Van der Heggen, D.; Martin, L.I.D.J.; Amidani, L.; Smet, P.F.; Barandiarán, Z.; Seijo, L. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat. Commun. 2020, 11, 3647. [Google Scholar] [CrossRef]
- Böhnisch, D.; Baur, F.; Jüstel, T. Photoluminescence and energy transfer behavior of narrow band red light emitting Li3Ba2Tb3(MoO4)8:Eu3. Dalton Trans. Int. J. Inorg. Chem. 2018, 47, 1520–1529. [Google Scholar] [CrossRef]
- He, P.; Xu, H.; Lan, L.; Deng, C.; Wu, Y.; Lin, Y.; Chen, S.; Ding, C.; Li, X.; Xu, M.; et al. The effect of charge transfer transition on the photostability of lanthanide-doped indium oxide thin-film transistors. Commun. Mater. 2021, 2, 86. [Google Scholar] [CrossRef]
- Yi, S.; Jung, J. Calcium Tungstate Doped with Rare Earth Ions Synthesized at Low Temperatures for Photoactive Composite and Anti-Counterfeiting Applications. Crystals 2021, 11, 1214. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Y.; Kang, S.; Yu, Z.; Wang, X.; Jin, D.; Wang, L. Synthesis and characterization of tunable luminescence phosphor: Eu3+ and Tb3+ co-doped CaGd2(WO4)4 for potential WLED applications. Optik 2021, 229, 166271. [Google Scholar] [CrossRef]
- Piccinelli, F.; Carrasco, I.; Ma, C.; Bettinelli, M. Systematic Analysis of the Crystal Chemistry and Eu3+ Spectroscopy along the Series of Double Perovskites Ca2LnSbO6 (Ln = La, Eu, Gd, Lu, and Y). Inorg. Chem. 2021, 60, 8259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xie, L.; Zhong, J.; Liang, H.; Zhang, J.; Wu, M. Site occupancy and luminescence properties of Eu3+ in double salt silicate Na3LuSi3O9. Opt. Mater. Express 2018, 8, 736. [Google Scholar] [CrossRef]
- Vu, T.H.Q.; Bondzior, B.; Stefańska, D.; Miniajluk, N.; Dereń, P.J. Synthesis, Structure, Morphology, and Luminescent Properties of Ba2MgWO6:Eu3+ Double Perovskite Obtained by a Novel Co-Precipitation Method. Materials 2020, 13, 1614. [Google Scholar] [CrossRef] [Green Version]
- Vinothkumar, G.; Rengaraj, S.; Arunkumar, P.; Cha, S.W.; Suresh Babu, K. Ionic Radii and Concentration Dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-Doped Cerium Oxide Nanoparticles for Enhanced Multienzyme-Mimetic and Hydroxyl Radical Scavenging Activity. J Phys. Chem. C 2018, 123, 541. [Google Scholar] [CrossRef]
- Raikwar, V.; Bhatkar, V.; Omanwar, S. Morphological and photoluminescence study of NaSrB5O9: Tb3+ nanocrystalline phosphor. J. Asian Ceram. Soc. 2018, 6, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Song, K.; Zhang, S.; Shen, S.; Xu, J.; Wu, J.; Su, W. Color-tunable light emission of SrLa4-x-ySi3O13:xTb3+, yEu3+ phosphors by energy transfer process for warm white LEDs. AIP Adv. 2018, 8, 15119. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Sun, J.; Jiang, X.; Li, Y.; Xu, Q.; Zhang, Q.; Ye, S. Variations in the 5D0 → 7F0–4 transitions of Eu3+ and white light emissions in Ag–Eu exchanged zeolite-Y. RSC Adv. 2016, 6, 95925–95935. [Google Scholar] [CrossRef]
- Devakumar, B.; Guo, H.; Zeng, Y.; Huang, X. A single-phased warm-white-emitting K3Y(PO4)2:Dy3+,Sm3+ phosphor with tuneable photoluminescence for near-UV-excited white LEDs. Dye Pigment. 2018, 157, 72–79. [Google Scholar] [CrossRef]
- Charbonnière, L.J.; Hildebrandt, N.; Ziessel, R.F.; Löhmannsröben, H. Lanthanides to Quantum Dots Resonance Energy Transfer in Time-Resolved Fluoro-Immunoassays and Luminescence Microscopy. J. Am. Chem. Soc. 2006, 128, 12800–12809. [Google Scholar] [CrossRef] [PubMed]
- Gálico, D.A.; Murugesu, M. Inside-Out/Outside-In Tunability in Nanosized Lanthanide-Based Molecular Cluster-Aggregates: Modulating the Luminescence Thermometry Performance via Composition Control. ACS Appl. Mater. Interfaces 2021, 13, 47052–47060. [Google Scholar] [CrossRef] [PubMed]
- Trannoy, V.; Carneiro Neto, A.N.; Brites, C.D.S.; Carlos, L.D.; Serier-Brault, H. Engineering of Mixed Eu3+/Tb3+ Metal-Organic Frameworks Luminescent Thermometers with Tunable Sensitivity. Adv. Opt. Mater. 2021, 9, 2001938. [Google Scholar] [CrossRef]
- Yu, W.; Peng, X. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem. 2007, 119, 2611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-Y. Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter. Crystals 2022, 12, 552. https://doi.org/10.3390/cryst12040552
Jung J-Y. Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter. Crystals. 2022; 12(4):552. https://doi.org/10.3390/cryst12040552
Chicago/Turabian StyleJung, Jae-Yong. 2022. "Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter" Crystals 12, no. 4: 552. https://doi.org/10.3390/cryst12040552