Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ceramic Rods Preparation
2.2. Crystal Growth
2.3. Sample Measurements
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Raman Spectroscopy
3.3. Positron Annihilation Lifetime Spectroscopy (PALS)
3.4. The Luminescence Spectra of the (ZrO2)92(Y2O3)7.25(Ho2O3)0.75 and (ZrO2)90(Y2O3)9.25(Ho2O3)0.75 Crystals
3.5. The Quantum Yields of the (ZrO2)92(Y2O3)7.25(Ho2O3)0.75 and (ZrO2)90(Y2O3)9.25(Ho2O3)0.75 Crystals
3.6. The Luminescence Properties of (ZrO2)90(Y2O3)10−x(Ho2O3)x
3.6.1. Absorption Spectrum
3.6.2. PL Spectra
3.6.3. Color Coordinate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Cao, C.; Zhang, C.; Xie, S.; Xu, G.; Zhang, J.; Wang, X. Photoluminescence and energy storage traps in CaTiO3:Pr3+. Mater. Res. Bull. 2010, 45, 1832–1836. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, W.; Ye, Y.; Deng, T.; Huang, Y.; Gu, S.; Chen, Y.; Xiao, P. 2.0 μm Ultra Broadband Emission from Tm3+/Ho3+Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers. Crystals 2021, 11, 190. [Google Scholar] [CrossRef]
- Buarque, J.M.M.; Manzani, D.; Scarpari, S.L.; Nalin, M.; Ribeiro, S.J.L.; Esbenshade, J.; Schiavon, M.A.; Ferrariet, J.L. SiO2-TiO2 doped with Er3+/Yb3+/Eu3+ photoluminescent material: A spectroscopy and structural study about potential application for improvement of the efficiency on solar cells. Mater. Res. Bull. 2018, 107, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sun, Z.; Ma, C.; Tao, R.; Zhang, J.; Li, H.; Zhao, E. Highly sensitive and accurate optical thermometer through Er doped tellurite glasses. Mater. Res. Bull. 2018, 105, 306–311. [Google Scholar] [CrossRef]
- Sreedhar, V.B.; Basavapoornima, C.; Jayasankar, C.K. Spectroscopic and fluorescence properties of Sm3+-doped zincfluorophosphate glasses. J. Rare Earths 2014, 32, 918–926. [Google Scholar] [CrossRef]
- Neelima, G.; Kummara, V.K.; Ravi, N.; Suresh, K.; Rasool, S.N.; Tyagarajan, K.; Prasad, T.J. Investigation of spectroscopic properties of Sm3+-doped oxyfluorophosphate glasses for laser and display applications. Mater. Res. Bull. 2018, 110, 223–229. [Google Scholar] [CrossRef]
- Singh, V.; Annapurna Devi, C.B.; Kaur, S.; Rao, A.S.; Singh, N. Optical properties of Sr2La8(SiO4)6O2 doped with Ho3+ phosphor. Optik 2021, 242, 167268. [Google Scholar] [CrossRef]
- Sarkar, J.; Mondal, S.; Panja, S.; Dey, I.; Sarkar, A.; Ghorai, U.K. Multicolour tuning and perfect white emission from novel PbWO4:Yb3+:Ho3+:Tm3+ nanophosphor. Mater. Res. Bull. 2019, 112, 314–322. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Shi, L.; Xing, L.; Tan, X. Bright white upconversion luminescence in Ho3+/Yb3+/Tm3+ triple doped CaWO4 polycrystals. Opt. Laser Technol. 2013, 54, 50–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, F.; Liu, L.; Liu, X.; Zheng, S.; Chen, D. Pr3+/Ho3+ co-doped glass phosphors for application in warm white light-emitting diodes. Mater. Lett. 2016, 167, 1–3. [Google Scholar] [CrossRef]
- Ming, C.; Song, F.; Yu, Y.; Wang, Q. Impact of Ce4+ ion on microstructure and luminescence character of Ho3+/Yb3+ co-doped ZrO2 nanocrystal. J. Alloys Compd. 2012, 512, 121–123. [Google Scholar] [CrossRef]
- John Berlin, I.; Lakshmi, J.S.; Sujatha Lekshmy, S.; Daniel, G.P.; Thomas, P.V.; Joy, K. Effect of sol temperature on the structure, morphology, optical and photoluminescence properties of nanocrystalline zirconia thin films. J. Sol-Gel Sci. Technol. 2011, 58, 669–676. [Google Scholar] [CrossRef]
- Liang, F.; Chen, J.; Cheng, J.; Jiang, S.P.; He, T.; Pu, J.; Li, J. Novel nano-structured Pd+ yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 2008, 10, 42–46. [Google Scholar] [CrossRef]
- Di Monte, R.; Kašpar, J. Heterogeneous environmental catalysis—A gentle art: CeO2–ZrO2 mixed oxides as a case history. Catal. Today 2005, 100, 27–35. [Google Scholar] [CrossRef]
- Hafele, E.; Kaltenmaier, K.; Schtinauer, U. Application of the ZrO2, Sensor in Determination of Pollutant Gases. Sens. Actuators B 1991, 4, 525–527. [Google Scholar] [CrossRef]
- Sathyaseelan, B.; Manikandan, E.; Baskaran, I.; Senthilnathan, K.; Sivakumar, K.; Moodley, M.K.; Ladchumanandasivam, R.; Maaza, M. Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications. J. Alloys Compd. 2017, 694, 556–559. [Google Scholar] [CrossRef]
- French, R.H.; Glass, S.J.; Ohuchi, F.S.; Xu, Y.; Ching, W.Y. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B Condens. Matter. 1994, 49, 5133–5142. [Google Scholar] [CrossRef]
- Viazzi, C.; Bonino, J.P.; Ansart, F.; Barnabé, A. Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J. Alloys Compd. 2008, 452, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Morinaga, M.; Adachi, H.; Tsukada, M. Electronic structure and pahse stability of ZrO2. J. Phys. Chem. Solids 1983, 44, 301–306. [Google Scholar] [CrossRef]
- Barabás, R.; Fort, C.I.; Turdean, G.L.; Bizo, L. Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications. Crystals 2021, 11, 202. [Google Scholar] [CrossRef]
- Schubert, H. Anisotropic Thermal Expansion Coefficients of Y203-Stabilized Tetragonal Zirconia. J. Am. Ceram. Soc. 1986, 69, 270–271. [Google Scholar] [CrossRef]
- Wang, D.N.; Xu, S.L.; Wang, X.Y.; Li, S.Y.; Hong, X.; Goodman, B.A.; Deng, W. Crystal growth, structure and optical properties of Pr3+-doped yttria-stabilized zirconia single crystals. Chin. Phys. B 2021, 30, 078103. [Google Scholar] [CrossRef]
- Srigurunathan, K.; Meenambal, R.; Guleria, A.; Kumar, D.; Ferreira, J.; Kannan, S. Unveiling the Effects of Rare-Earth Substitutions on the Structure, Mechanical, Optical, and Imaging Features of ZrO2 for Biomedical Applications. ACS Biomater. Sci. Eng. 2019, 5, 1725–1743. [Google Scholar] [CrossRef] [PubMed]
- Popov, V.V.; Menushenkov, A.P.; Yastrebtsev, A.A.; Tsarenko, N.A.; Arzhatkina, L.A.; Shchetinin, I.V.; Zheleznyi, M.V.; Ponkratov, K.V. Regularities of formation of complex oxides with the fluorite structure in the ZrO2–Y2O3 system. Russ. J. Inorg. Chem. 2017, 62, 1147–1154. [Google Scholar] [CrossRef]
- Cruz, R.M.; Pareja, R.; Gonzalez, R. Effect of thermochemical reduction on the electrical, optical-absorption, and positron-annihilation characteristics of ZnO crystals. Phys. Rev. B 1992, 45, 6581–6586. [Google Scholar] [CrossRef]
- Dutta, S.; Chattopadhyay, S.; Jana, D.; Banerjee, A.; Manik, S.; Pradhan, S.K.; Sutradhar, M.; Sarkar, A. Annealing effect on nano-ZnO powder studied from positron lifetime and optical absorption spectroscopy. J. Appl. Phys. 2006, 100, 114328. [Google Scholar] [CrossRef]
- Brandt, W.; Paulin, R. Positron Diffusion in Solids. Phys. Rev. B 1972, 5, 2430–2435. [Google Scholar] [CrossRef]
- Nambissan, P.M.G. Nano sulfide and oxide semiconductors as promising materials for studies by positron annihilation. J. Phys. Conf. Ser. 2013, 443, 012040. [Google Scholar] [CrossRef] [Green Version]
- Šćepanović, M.; de Castro, V.; García-Cortés, I.; Sánchez, F.J.; Gigl, T.; Hugenschmidt, C.; Leguey, T. Characterisation of open volume defects in Fe–Cr and ODS Fe–Cr alloys after He+ and Fe+ ion irradiations. J. Nucl. Mater. 2020, 538, 152230. [Google Scholar] [CrossRef]
- Anwand, W.; Skorupa, W.; Schumann, T.; Posselt, M.; Schmidt, B.; Grötzschel, R.; Brauer, G. Implantation-caused open volume defects in Ge after flash lamp annealing (FLA) probed by slow positron implantation spectroscopy (SPIS). Appl. Surf. Sci. 2008, 255, 81–83. [Google Scholar] [CrossRef]
- Kesavulu, C.R.; Kim, H.J.; Lee, S.W.; Kaewkhao, J.; Wantana, N.; Kothan, S.; Kaewjaeng, S. Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. J. Non-Cryst. Solids 2017, 474, 50–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, X.; Yan, D.; Zhao, Y.; Zhou, H.; Zhao, X.; Li, J.; Jin, H. The effect of artificial stress on Er3+ doped perovskite lead-free piezoceramics. J. Alloys Compd. 2017, 709, 724–728. [Google Scholar] [CrossRef]
- Zhao, Y.; Ge, Y.; Zhang, X.; Zhao, Y.; Zhou, H.; Li, J.; Jin, H. Comprehensive investigation of Er2O3 doped (Li,K,Na)NbO3 ceramics rendering potential application in novel multifunctional devices. J. Alloys Compd. 2016, 683, 171–177. [Google Scholar] [CrossRef]
- Lin, J.; Lu, Q.; Xu, J.; Wu, X.; Lin, C.; Lin, T.; Chen, C.; Luo, L.H. Outstanding optical temperature sensitivity and dual-mode temperature-dependent photoluminescence in Ho3+ -doped (K,Na)NbO3–SrTiO3 transparent ceramics. J. Am. Ceram. Soc. 2019, 102, 4710–4720. [Google Scholar] [CrossRef]
- Ishida, H.; Bünzli, J.C.; Beeby, A. Guidelines for measurement of luminescence spectra and quantum yields of inorganic and organometallic compounds in solution and solid state (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Ishida, H.; Tobita, S.; Hasegawa, Y.; Katoh, R.; Nozaki, K. Recent advances in instrumentation for absolute emission quantum yield measurements. Coord. Chem. Rev. 2010, 254, 2449–2458. [Google Scholar] [CrossRef]
- Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. Fluorescence Quantum Yield of Aromatic Hydrocarbon Crystals. J. Phys. Chem. C 2009, 113, 2961–2965. [Google Scholar] [CrossRef]
- Upadhyaya, D.D.; Ghosh, A.; Gurumurthy, K.R.; Ram, P. Microwave sintering of cubic zirconia. Ceram. Int. 2001, 27, 415–418. [Google Scholar] [CrossRef]
- Soares, M.R.N.; Soares, M.J.; Fernandes, A.J.S.; Rino, L.; Costa, F.M.; Monteiro, T. YSZ:Dy3+ single crystal white emitter. J. Mater. Chem. 2011, 21, 15262–15265. [Google Scholar] [CrossRef]
- Manjunatha, S.; Dharmaprakash, M.S. Microwave assisted synthesis of cubic Zirconia nanoparticles and study of optical and photoluminescence properties. J. Lumin. 2016, 180, 20–24. [Google Scholar] [CrossRef]
- Rosa, E.D.L.; Diaz-Torres, L.A.; Salas, P.; Rodríguez, R.A. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Opt. Mater. 2005, 27, 1320–1325. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.B.; Zhang, C.L.; Zhang, Y.Z.; Liu, J.Y.; Wang, Y.F.; Liu, D.H.; Du, S.; Xu, X.L.; Wang, L.; et al. Optical parameters and energy levels splitting of Ho3+ in Ho3+ GdVO4. Chin. Phys. B 2008, 17, 4656–4664. [Google Scholar]
- Wang, H.; Yang, Q.; Sun, Y.; Jiang, X.; Huang, D. Optical spectroscopy studies of Ho/Yb co-doped yttrium lanthanum oxide transparent ceramics. J. Lumin. 2017, 192, 752–756. [Google Scholar] [CrossRef]
- Jayachandra Prasad, T.; Neelima, G.; Ravi, N.; Kiran, N.; Nallabala, N.K.; Kummara, V.K.; Suresh, K.; Gadige, P. Optical and spectroscopic properties of Ho3+-doped fluorophosphate glasses for visible lighting applications. Mater. Res. Bull. 2020, 124, 110753. [Google Scholar]
- Priyanka, R.; Arunkumar, S.; Basavapoornima, C.; Mary Mathelane, R.; Marimuthu, K. Structural and spectroscopic investigations on Eu3+ ions doped boro-phosphate glasses for optical display applications. J. Lumin. 2020, 220, 116964. [Google Scholar] [CrossRef]
- Hong, X.; Xu, S.; Wang, X.; Wang, D.; Li, S.; Goodman, B.A.; Deng, W. Growth, structure and optical spectroscopic properties of dysprosia-doped cubic yttria stabilized zirconia (YSZ) single crystals. J. Lumin. 2021, 231, 117766. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Structural and Spectroscopic Effects of Li+ Substitution for Na+ in LixNa1−xCaGd0.5Ho0.05Yb0.45(MoO4)3 Scheelite-Type Upconversion Phosphors. Molecules 2021, 26, 7357. [Google Scholar] [CrossRef]
- Dexter, D.L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Kalimuthu, K.R.; Moorthy Babu, S.; Kalimuthu, V. Synthesis and photoluminescence properties of Sm3+ doped LiGd(WO4)2 phosphors with high color purity. Opt. Mater. 2020, 102, 109804. [Google Scholar]
- Gavenda, T.; Gedeon, O.; Jurek, K. Volume changes in glass induced by an electron beam. Nucl Instrum Methods. Phys. Res. B 2014, 322, 7–12. [Google Scholar]
- Das, S.; Lalla, N.P.; Okram, G.S. Synthesis, characterization and dielectric properties of nanocrystalline nickel. Indian J. Pure Appl. Phys. 2014, 52, 386–390. [Google Scholar]
- McCamy, C.S. Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates. Color Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
Samples | Composition mol% | ||
---|---|---|---|
ZrO2 | Y2O3 | Ho2O3 | |
(ZrO2)90(Y2O3)10 | 90.00 | 10.00 | 0.00 |
(ZrO2)90(Y2O3)9.90(Ho2O3)0.10 | 90.00 | 9.90 | 0.10 |
(ZrO2)90(Y2O3)9.80(Ho2O3)0.20 | 90.00 | 9.80 | 0.20 |
(ZrO2)90(Y2O3)9.70(Ho2O3)0.30 | 90.00 | 9.70 | 0.30 |
(ZrO2)90(Y2O3)9.50(Ho2O3)0.50 | 90.00 | 9.50 | 0.50 |
(ZrO2)90(Y2O3)9.25(Ho2O3)0.75 | 90.00 | 9.25 | 0.75 |
(ZrO2)90(Y2O3)9.00(Ho2O3)1.00 | 90.00 | 9.00 | 1.00 |
(ZrO2)90(Y2O3)8.80(Ho2O3)1.20 | 90.00 | 8.80 | 1.20 |
(ZrO2)92(Y2O3)8 | 92.00 | 8.00 | 0.00 |
(ZrO2)92(Y2O3)7.25(Ho2O3)0.75 | 92.00 | 7.25 | 0.75 |
Sample | τ1 (ps) | τ2 (ps) | I1 (%) | I2 (%) | λb (ns−1) | τb (ps) | τm (ps) |
---|---|---|---|---|---|---|---|
(ZrO2)92(Y2O3)7.25(Ho2O3)0.75 | 193 ± 1 | 482 ± 26 | 89.2 | 10.8 | 4.84 | 206 | 224 |
(ZrO2)90(Y2O3)9.25(Ho2O3)0.75 | 191 ± 1 | 436 ± 14 | 82.2 | 17.8 | 4.71 | 212 | 234 |
Sample | Nabs (Counts) | Nem (Counts) | QY (%) |
---|---|---|---|
(ZrO2)92(Y2O3)7.25(Ho2O3)0.75 | 49,204,500 | 15,458,581 | 31.4 |
(ZrO2)90(Y2O3)9.25(Ho2O3)0.75 | 48,688,100 | 11,318,743 | 23.2 |
x | Slope | Intercept | R2 | Eg (eV) |
---|---|---|---|---|
0.10 | 477 | −2324 | 0.9998 | 4.86 |
0.30 | 557 | −2714 | 0.9995 | 4.87 |
0.50 | 561 | −2732 | 0.9995 | 4.87 |
0.75 | 577 | −2812 | 0.9997 | 4.87 |
1.00 | 596 | −2904 | 0.9998 | 4.87 |
1.20 | 611 | −2974 | 0.9998 | 4.86 |
x | CIE x | CIE y | CCT |
---|---|---|---|
0.10 | 0.2977 | 0.6891 | 5777 |
0.30 | 0.3020 | 0.6877 | 5745 |
0.50 | 0.3072 | 0.6835 | 5707 |
1.00 | 0.3093 | 0.6822 | 5693 |
1.20 | 0.3129 | 0.6786 | 5667 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xu, S.; Li, S.; Wu, W.; Pan, Y.; Wang, D.; Hong, X.; Cheng, Z.; Deng, W. Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals. Crystals 2022, 12, 415. https://doi.org/10.3390/cryst12030415
Yang Y, Xu S, Li S, Wu W, Pan Y, Wang D, Hong X, Cheng Z, Deng W. Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals. Crystals. 2022; 12(3):415. https://doi.org/10.3390/cryst12030415
Chicago/Turabian StyleYang, Yuhua, Shoulei Xu, Siyao Li, Wenxia Wu, Yihua Pan, Daini Wang, Xing Hong, Zeyu Cheng, and Wen Deng. 2022. "Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals" Crystals 12, no. 3: 415. https://doi.org/10.3390/cryst12030415
APA StyleYang, Y., Xu, S., Li, S., Wu, W., Pan, Y., Wang, D., Hong, X., Cheng, Z., & Deng, W. (2022). Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals. Crystals, 12(3), 415. https://doi.org/10.3390/cryst12030415