Numerical Simulation of β-Ga2O3 Single Crystal Growth by Czochralski Method with an Insulation Lid
Abstract
:1. Introduction
2. Numerical Models
2.1. Geometric Model and Material Properties
2.2. Mathematical Models
3. Results and Discussion
3.1. Effect of the Insulation Lid
3.2. Heat Transfer Analysis
3.3. Material Parameters Selection
3.4. Effect of Inner Diameter
3.5. Thermal Stress Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mu, W.; Jia, Z.; Yin, Y.; Fu, B.; Zhang, J.; Zhang, J.; Tao, X. Solid–liquid interface optimization and properties of ultra-wide bandgap β-Ga2O3 grown by Czochralski and EFG methods. CrystEngComm 2019, 21, 2762–2767. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, Y.Y.; Xia, N.; Guo, X.W.; Hong, Z.J.; Zhang, H.; Yang, D.R. Wet etching in β-Ga2O3 bulk single crystals. CrystEngComm 2022, 24, 1127–1144. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Konishi, K.; Sasaki, K.; Goto, K.; Nomura, K.; Thieu, Q.T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Monemar, B.; et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016, 108, 133503. [Google Scholar] [CrossRef]
- He, Q.; Mu, W.; Fu, B.; Jia, Z.; Long, S.; Yu, Z.; Yao, Z.; Wang, W.; Dong, H.; Qin, Y.; et al. Schottky Barrier Rectifier Based on (100) β-Ga2O3 and its DC and AC Characteristics. IEEE Electron Device Lett. 2018, 39, 556–559. [Google Scholar] [CrossRef]
- Luchechko, A.; Vasyltsiv, V.; Kostyk, L.; Tsvetkova, O.; Popov, A.I. Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 441, 12–17. [Google Scholar] [CrossRef]
- Tang, X.; Liu, B.; Yu, Y.; Song, B.; Han, P.; Liu, S.; Gao, B. Effect of Internal Radiation on Process Parameters in the Global Simulation of Growing Large-Size Bulk β-Ga2O3 Single Crystals with the Czochralski Method. Crystals 2021, 11, 763. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst. Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Galazka, Z.; Uecker, R.; Irmscher, K.; Albrecht, M.; Klimm, D.; Pietsch, M.; Brützam, M.; Bertram, R.; Ganschow, S.; Fornari, R. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 2010, 45, 1229–1236. [Google Scholar] [CrossRef]
- Galazka, Z.; Irmscher, K.; Uecker, R.; Bertram, R.; Pietsch, M.; Kwasniewski, A.; Naumann, M.; Schulz, T.; Schewski, R.; Klimm, D.; et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 2014, 404, 184–191. [Google Scholar] [CrossRef]
- Galazka, Z.; Uecker, R.; Klimm, D.; Irmscher, K.; Naumann, M.; Pietsch, M.; Kwasniewski, A.; Bertram, R.; Ganschow, S.; Bickermann, M. Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J. Solid State Sci. Technol. 2016, 6, Q3007–Q3011. [Google Scholar] [CrossRef]
- Galazka, Z. Growth of bulk β-Ga2O3 single crystals by the Czochralski method. J. Appl. Phys. 2022, 131, 031103. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Xia, N.; Hong, Z.; Zhang, H.; Yang, D. Floating Particles in the Melt during the Growth of β-Ga2O3 Single Crystals Using the Czochralski Method. Metals 2022, 12, 1171. [Google Scholar] [CrossRef]
- Aida, H.; Nishiguchi, K.; Takeda, H.; Aota, N.; Sunakawa, K.; Yaguchi, Y. Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method. Jpn. J. Appl. Phys. 2008, 47, 8506–8509. [Google Scholar] [CrossRef]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Peartong, S.J. Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356–P359. [Google Scholar] [CrossRef]
- Kuramata, A.; Koshi, K.; Watanabe, S.; Yamaoka, Y.; Masui, T.; Yamakoshi, S. Bulk Crystal Growth of Ga2O3. Proc. SPIE 2018, 10533, 9–14. [Google Scholar] [CrossRef]
- Fu, B.; Mu, W.; Zhang, J.; Wang, X.; Zhuang, W.; Yin, Y.; Jia, Z.; Tao, X. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method. CrystEngComm 2020, 22, 5060–5066. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Ohba, E.; Kobayashi, T.; Yanagisawa, J.; Miyagawa, C.; Nakamura, Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 2016, 447, 36–41. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Kobayashi, T.; Ohba, E. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air. J. Cryst. Growth 2020, 546, 125778. [Google Scholar] [CrossRef]
- Villora, E.G.; Shimamura, K.; Yoshikawa, Y.; Aoki, K.; Ichinose, N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 2004, 270, 420–426. [Google Scholar] [CrossRef]
- Suzuki, N.; Ohira, S.; Tanaka, M.; Sugawara, T.; Nakajima, K.; Shishido, T. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys. Status Solidi C 2007, 4, 2310–2313. [Google Scholar] [CrossRef]
- Galazka, Z.; Ganschow, S.; Reiche, P.; Uecker, R. Experimental Study of Interface Inversion of Tb3ScxAl5−xO12 Single Crystals Grown by the Czochralski Method. Cryst. Res. Technol. 2002, 37, 407–413. [Google Scholar] [CrossRef]
- Derby, J.J.; Brown, R.A. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation. J. Cryst. Growth 1986, 74, 605–624. [Google Scholar] [CrossRef]
- Song, D.W.; Lee, S.H.; Mun, Y.H.; Kim, H. Oxygen content increasing mechanism in Czochralski (CZ) silicon crystals doped with heavy antimony under a double-typed heat shield. J. Cryst. Growth 2011, 325, 27–31. [Google Scholar] [CrossRef]
- Teng, R.; Zhou, Q.G.; Dai, X.L.; Wu, Z.Q.; Xu, W.T.; Xiao, Q.H.; Wu, X.; Guo, X. Optimization of heat shield for single silicon crystal growth by using numerical simulation. Rare Met. 2012, 31, 489–493. [Google Scholar] [CrossRef]
- Fang, H.S.; Pan, Y.Y.; Zheng, L.L.; Zhang, Q.J.; Wang, S.; Jin, Z.L. To investigate interface shape and thermal stress during sapphire single crystal growth by the Cz method. J. Cryst. Growth 2013, 363, 25–32. [Google Scholar] [CrossRef]
- Fang, H.S.; Tian, J.; Wang, S.; Long, Y.; Zhang, M.J.; Zhao, C.J. Numerical optimization of czochralski sapphire single crystal growth using orthogonal design method. Cryst. Res. Technol. 2014, 49, 323–330. [Google Scholar] [CrossRef]
- Fang, H.S.; Jin, Z.L.; Huang, X.M. Study and optimization of gas flow and temperature distribution in a Czochralski configuration. J. Cryst. Growth 2012, 361, 114–120. [Google Scholar] [CrossRef]
- Tang, X.; Liu, B.; Yu, Y.; Liu, S.; Gao, B. Numerical Analysis of Difficulties of Growing Large-Size Bulk β-Ga2O3 Single Crystals with the Czochralski Method. Crystals 2020, 11, 25. [Google Scholar] [CrossRef]
- Miller, W.; Böttcher, K.; Galazka, Z.; Schreuer, J. Numerical Modelling of the Czochralski Growth of β-Ga2O3. Crystals 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Dingwell, D.B. Density of Ga2O3 Liquid. J. Am. Ceram. Soc. 1992, 75, 1656–1657. [Google Scholar] [CrossRef]
- Guo, Z.; Verma, A.; Wu, X.; Sun, F.; Hickman, A.; Masui, T.; Kuramata, A.; Higashiwaki, M.; Jena, D.; Luo, T. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 2015, 106, 111909. [Google Scholar] [CrossRef] [Green Version]
- Demina, S.E.; Bystrova, E.N.; Postolov, V.S.; Eskov, E.V.; Nikolenko, M.V.; Marshanin, D.A.; Yuferev, V.S.; Kalaev, V.V. Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method. J. Cryst. Growth 2008, 310, 1443–1447. [Google Scholar] [CrossRef]
- Kalaev, V.V.; Evstratov, I.Y.; Makarov, Y.N. Gas flow effect on global heat transport and melt convection in Czochralski silicon growth. J. Cryst. Growth 2003, 249, 87–99. [Google Scholar] [CrossRef]
Properties | Symbol | Melt | Crystal |
---|---|---|---|
Density | ρ (kg/m3) | 6217.35-0.65T | 5974.5-0.0815T |
Specific heat | Cp (J∙kg−1∙K−1) | 850 | 700 |
Thermal conductivity | λ (W∙m−1∙K−1) | 4.3 | 32,800 × (1/T)1.27 |
Emissivity | ε | 0.5 | 0.3 |
Melting point | Tm (K) | / | 2093 |
Latent heat | ΔH (kJ/kg) | 533.5 | / |
Viscosity | μ (Pa∙s) | 0.05 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Xia, N.; Ma, K.; Wang, J.; Li, C.; Jin, Z.; Zhang, H.; Yang, D. Numerical Simulation of β-Ga2O3 Single Crystal Growth by Czochralski Method with an Insulation Lid. Crystals 2022, 12, 1715. https://doi.org/10.3390/cryst12121715
Wu D, Xia N, Ma K, Wang J, Li C, Jin Z, Zhang H, Yang D. Numerical Simulation of β-Ga2O3 Single Crystal Growth by Czochralski Method with an Insulation Lid. Crystals. 2022; 12(12):1715. https://doi.org/10.3390/cryst12121715
Chicago/Turabian StyleWu, Dan, Ning Xia, Keke Ma, Jiabin Wang, Cheng Li, Zhu Jin, Hui Zhang, and Deren Yang. 2022. "Numerical Simulation of β-Ga2O3 Single Crystal Growth by Czochralski Method with an Insulation Lid" Crystals 12, no. 12: 1715. https://doi.org/10.3390/cryst12121715
APA StyleWu, D., Xia, N., Ma, K., Wang, J., Li, C., Jin, Z., Zhang, H., & Yang, D. (2022). Numerical Simulation of β-Ga2O3 Single Crystal Growth by Czochralski Method with an Insulation Lid. Crystals, 12(12), 1715. https://doi.org/10.3390/cryst12121715