Synthesis of Nickel Cobaltite/Multiwalled Carbon Nanotubes Composites and Their Application for Removing Uranium (VI)
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of NiCo2O4/MWCNTs Samples
2.2. Adsorption Experiments
2.3. Characterization
3. Results and Discussion
3.1. Characterization of the NiCo2O4/MWCNTs Composite
3.2. Uranium(VI) Sorption by the NiCo2O4@MWCNTs Composite Experiments
3.2.1. pH Influence
3.2.2. Effect of Contact Time
3.2.3. Effect of Temperature
3.2.4. Adsorption Isotherms
3.2.5. Comparison of Adsorbent Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Huang, X.X.; Zhang, H.; Ma, J.H.; Li, F.; Zeng, Q.Y.; Hu, N.; Wang, Y.D.; Dai, Z.R.; Ding, D.X. Coupled variations of dissolved organic matter distribution and iron (oxyhydr)oxides transformation: Effects on the kinetics of uranium adsorption and desorption. J. Hazard. Mater. 2022, 436, 129298. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Huang, Q.G.; Dong, Y.H.; Yao, Z.; Wang, J.R.; Qin, Z.; Ning, Z.G.; Xie, J.J.; Tian, W.; Yao, H.J.; et al. Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane. Chem. Eng. J. 2022, 444, 136602. [Google Scholar] [CrossRef]
- Abdi, S.; Nasiri, M.; Mesbahi, A.; Khani, M.H. Investigation of uranium (VI) adsorption by polypyrrole. J. Hazard. Mater. 2017, 332, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.C.; Fang, Y.C. Preparation of amidoxime modified calixarene fiber for highly efficient adsorption of uranium (VI). Sep. Purif. Technol. 2022, 303, 122257. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, L.; Yuan, L.Y.; Xiao, C.L.; Mei, L.; Zheng, L.R.; Zhang, J.; Yang, J.H.; Zhao, Y.L.; Zhu, Z.T.; et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J. Hazard. Mater. 2015, 290, 26–33. [Google Scholar] [CrossRef]
- Mellah, A.; Chegrouche, S.; Barkat, M.J. The removal of uranium (VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations. J. Colloid Interf. Sci. 2006, 296, 434–441. [Google Scholar] [CrossRef]
- Chen, B.D.; Wang, J.; Kong, L.J.; Mai, X.X.; Zheng, N.C.; Zhong, Q.H.; Liang, J.Y.; Chen, D.Y. Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): Isotherm, kinetic and characterization studies. Colloid Surf. A-Physicochem. Eng. Asp. 2017, 520, 612–621. [Google Scholar] [CrossRef]
- Lenhart, J.J.; Honeyman, B.D. Uranium(VI) sorption to hematite in the presence of humic acid. Geochim. Cosmochim. Acta 1999, 63, 2891–2901. [Google Scholar] [CrossRef]
- Nibou, D.; Khemaissia, S.; Amokrane, S.; Barkat, M.; Chegrouche, S.; Mellah, A. Removal of UO22+ onto synthetic NaA zeolite. Characterization, equilibrium and kinetic studies. Chem. Eng. J. 2011, 172, 296–305. [Google Scholar] [CrossRef]
- Psareva, T.S.; Zakutevskyy, O.I.; Chubar, N.I.; Strelko, V.V.; Shaposhnikova, T.O.; Carvalho, J.R.; Correia, M.J.N. Uranium sorption on cork biomass. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 252, 231–236. [Google Scholar] [CrossRef]
- Akperov, E.O.; Maharramov, A.M.; Akperov, O.G. Uranyl ion adsorption using novel cross-linked maleic anhydride-allyl propionate-styrene terpolymer. Hydrometallurgy 2009, 100, 76–81. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Shchegolkov, A.V. Synthesis of Carbon Nanotubes Using Microwave Radiation: Technology, Properties, and Structure. Russ. J. Gen. Chem. 2022, 92, 1168–1172. [Google Scholar] [CrossRef]
- Bagautdinov, B.; Ohara, K.; Babaev, A.A. High-energy X-ray diffraction study of multiwalled carbon nanotubes fabricated by arc discharge plasma process. Carbon 2022, 191, 75–83. [Google Scholar] [CrossRef]
- Iijima, S. Helical mircrotubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Ali, M.; Iqbal, R.; Saeed, K.; Khan, A.; Umar, M.N.; Rashid, H.U. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt-Sn supported on MWCNTs. J. Chem. Sci. 2015, 127, 1167–1172. [Google Scholar] [CrossRef]
- Liu, B.M.; Song, W.B.; Zhang, W.W.; Zhang, X.; Pan, S.L.; Wu, H.X.; Sun, Y.J.; Xu, Y.H. Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism. Sep. Purif. Technol. 2021, 273, 118705. [Google Scholar] [CrossRef]
- Ali, I.; AlGarni, T.S.; Shchegolkov, A.; Shchegolkov, A.; Jang, S.H.; Galunin, E.; Komarov, F.; Borovskikh, P.; Imanova, G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers. Polym. Bull. 2021, 78, 6689–6703. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Glivenkova, O.A. Multistage Mechanical Activation of Multilayer Carbon Nanotubes in Creation of Electric Heaters with Self-Regulating Temperature. Materials 2021, 14, 4654. [Google Scholar] [CrossRef]
- Prabhavathi, G.; Arjun, M.; Yamuna, R. Synthesis, characterization and photoluminescence properties of tetra (aminophenyl) porphyrin covalently linked to multi-walled carbon nanotubes. J. Chem. Sci. 2017, 129, 699–706. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.Y.; Sun, Y.X.; Guo, S.Q.; Shi, C.H.; Liu, Y.F.; Li, C.J. Cellular scaffolds based on multiwalled carbon nanotubes interpenetrating conductive metal-organic frameworks as efficient eelectrocatalysts in microbial fuel cells. J. Power Sources 2022, 541, 231685. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, Q.; Nie, Y.; Wei, H.; Wang, B.; Huang, J.; Yu, G.; Xing, B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environ. Pollut. 2012, 168, 138–144. [Google Scholar] [CrossRef]
- Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 2005, 43, 2379–2388. [Google Scholar] [CrossRef]
- Bang, J.H.; Mirzaei, A.; Choi, M.S.; Han, S.; Lee, H.Y.; Kim, S.S.; Kim, H.W. Decoration of multi-walled carbon nanotubes with CuO/Cu2O nanoparticles for selective sensing of H2S gas. Sensor. Actuat. B-Chem. 2021, 344, 130176. [Google Scholar] [CrossRef]
- Madihi-Bidgoli, S.; Asadnezhad, S.; Yaghoot-Nezhad, A.; Hassani, A. Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: Performance, mechanism and environmental application. J. Environ. Chem. Eng. 2021, 9, 106660. [Google Scholar] [CrossRef]
- Xiao, J.W.; Yang, S.H. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 2011, 1, 588–595. [Google Scholar] [CrossRef]
- Wei, T.Y.; Chen, C.H.; Chien, H.C.; Lu, S.Y.; Hu, C.C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 21, 347–351. [Google Scholar] [CrossRef]
- Jiang, H.; Man, J.; Li, C.Z. Design and synthesis of NiCo2O4-reduced grapheme oxide composites for high performance supercapacitors. Chem. Commun. 2012, 48, 4465–4467. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, D.; Ding, Y.; Feng, S.; Wang, Z.L.; Liu, M. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Le, V.R.; Huang, C.P.; Chen, C.W.; Chen, L.; Dong, C.D. Construction of ternary NiCo2O4/MnOOH/GO composite for peroxymonosulfate activation with enhanced catalytic activity toward ciprofloxacin degradation. Chem. Eng. J. 2022, 446, 137326. [Google Scholar] [CrossRef]
- Cong, Y.Q.; Chen, X.; Ye, L.J.; Li, X.C.; Lv, S.W. A newly-designed free-standing NiCo2O4 nanosheet array as effective mediator to activate peroxymonosulfate for rapid degradation of emerging organic pollutant with high concentration. Chemosphere 2022, 307, 136073. [Google Scholar] [CrossRef]
- Silwal, P.; Miao, L.; Hu, J.; Spinu, L.; Kim, D.H.; Talbayev, D. Thickness dependent structural, magnetic, and electronic properties of the epitaxial films of transparent conducting oxide NiCo2O4. J. Appl. Phys. 2013, 114, 103704. [Google Scholar] [CrossRef]
- Bao, Y.Q.; Qin, M.; Yu, Y.K.; Zhang, L.M.; Wu, H.J. Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red. Journal of Physics and Chemistry of Solids. J. Phys. Chem. Solids 2019, 124, 289–295. [Google Scholar] [CrossRef]
- Song, X.M.; Tan, L.C.; Sun, X.J.; Ma, H.Y.; Zhu, L.; Yi, X.Q.; Dong, Q.; Gao, J.Y. Facile preraration of NiCo2O4@rGO composites for the removal of uranium ions from aqueous solutions. Dalton Trans. 2016, 45, 16931–16937. [Google Scholar] [CrossRef] [PubMed]
- Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes. J. Solid State Chem. 2011, 184, 1245–1250. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, G. Water oxidation on spinel NiCo2O4 nanoneedles anode: Microstructures, specific surface character, and the enhanced electrocatalytic performance. J. Phys. Chem. C 2014, 118, 25939–25946. [Google Scholar] [CrossRef]
- Wei, S.; Wang, X.X.; Zhang, B.Q.; Yu, M.X.; Zheng, Y.W.; Wang, Y.; Liu, J.Q. Preparation of Hierarchical Core-Shell C@NiCo2O4@Fe3O4 Composites for Enhanced Microwave Absorption Performance. Chem. Eng. J. 2017, 314, 477–487. [Google Scholar] [CrossRef]
- Dong, W.; Brooks, S.C. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environ. Sci. Technol. 2006, 40, 4689–4695. [Google Scholar] [CrossRef]
- Guo, Z.J.; Yan, C.; Xu, J.; Wu, W.S. Sorption of U(VI) and phosphate on γ-alumina: Binary and ternary. Colloid Surf. A-Physicochem. Eng. Asp. 2009, 336, 123–129. [Google Scholar] [CrossRef]
- Tokunaga, T.K.; Kim, Y.; Wan, J.M.; Yang, L. Aqueous Uranium(VI) Concentrations Controlled by Calcium Uranyl Vanadate Precipitates. Environ. Sci. Technol. 2012, 46, 7471–7477. [Google Scholar] [CrossRef] [PubMed]
- Sajab, M.S.; Chia, C.H.; Zakaria, S.; Jani, S.M.; Ayob, M.K.; Chee, K.L.; Khiew, P.S.; Chiu, W.S. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour. Technol. 2011, 102, 7237–7243. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Li, L.; Ding, J.; Wang, R.B.; Jin, Y.D.; Xia, C.Q. A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). J. Colloid Interface Sci. 2017, 508, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Divya, L.; Suchithra, P.S. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethyl- methacrylate)-grafted lignocellulosics. J. Environ. Manag. 2009, 90, 549–560. [Google Scholar] [CrossRef]
- Elabd, A.A.; Zidan, W.I.; Abo-Aly, M.M.; Bakier, E.; Attia, M.S. Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120. J. Environ. Radioactiv. 2014, 134, 99–108. [Google Scholar] [CrossRef]
- Stamberg, K.; Venkatesan, K.A.; Rao, P.R.V. Surface complexation modeling of uranyl ion sorption on mesoporous silica. Colloid Surf. A-Physicochem. Eng. Asp. 2003, 221, 149–162. [Google Scholar] [CrossRef]
- Xie, S.B.; Zhang, C.; Zhou, X.H.; Yang, J.; Zhang, X.J.; Wang, J.S. Removal of uranium (VI) from aqueous solution by adsorption of hematite. J. Environ. Radioactiv. 2009, 100, 162–166. [Google Scholar]
Kinetic Model | T (°C) | qe (exp) (mg g−1) | qe (cal) (mg g−1) | k2ads (g mg−1 min−1) | R2 |
---|---|---|---|---|---|
Pseudo-second order | 25 | 247.4 | 254.5 | 2.65 × 10−4 | 0.99 |
Temp | Langmuir | ||
---|---|---|---|
(°C) | b (L mg−1) | qm (mg g−1) | R2 |
25 | 0.965 | 253.8 | 0.99 |
35 | 1.369 | 259.1 | 0.99 |
45 | 1.611 | 265.3 | 0.99 |
Adsorbents | Capacity (mg g−1) | Ref. |
---|---|---|
Activated carbon (Merck) | 28.30 | [6] |
GO-S | 197.5 | [42] |
Carboxylate-functionalized poly(hydroxy ethylmethacrylate)-grafted lignocellulosics | 109.6 | [43] |
Polypyrrole | 87.72 | [3] |
Ni(OH)2-loaded Amberlite IR120 | 439 | [44] |
Co(OH)2-loaded Amberlite IR120 | 451 | [44] |
Amorphous silica | 58 | [45] |
Hematite | 3.36 | [46] |
NiCo2O4/MWCNTs | 247.4 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ni, B.; Li, X.; Guan, X.; Xia, W.; Hao, J.; Tan, L. Synthesis of Nickel Cobaltite/Multiwalled Carbon Nanotubes Composites and Their Application for Removing Uranium (VI). Crystals 2022, 12, 1712. https://doi.org/10.3390/cryst12121712
Zhang X, Ni B, Li X, Guan X, Xia W, Hao J, Tan L. Synthesis of Nickel Cobaltite/Multiwalled Carbon Nanotubes Composites and Their Application for Removing Uranium (VI). Crystals. 2022; 12(12):1712. https://doi.org/10.3390/cryst12121712
Chicago/Turabian StyleZhang, Xiaofei, Binshan Ni, Xiaoxuan Li, Xin Guan, Wandong Xia, Jiabin Hao, and Lichao Tan. 2022. "Synthesis of Nickel Cobaltite/Multiwalled Carbon Nanotubes Composites and Their Application for Removing Uranium (VI)" Crystals 12, no. 12: 1712. https://doi.org/10.3390/cryst12121712
APA StyleZhang, X., Ni, B., Li, X., Guan, X., Xia, W., Hao, J., & Tan, L. (2022). Synthesis of Nickel Cobaltite/Multiwalled Carbon Nanotubes Composites and Their Application for Removing Uranium (VI). Crystals, 12(12), 1712. https://doi.org/10.3390/cryst12121712