Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors
Abstract
1. Introduction
2. Computational Model
3. Results and Discussion
3.1. Electronic Properties
3.2. Sensing Properties
3.3. I-V Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments. Phys. Rev. Lett. 2009, 102, 195505. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Chuvilin, A.; Algara-Siller, G.; Biskupek, J.; Kaiser, U. Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes. Nano Lett. 2009, 9, 2683–2689. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J.F.; Dresselhaus, M.; Palacios, T.; et al. Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. Nano Lett. 2012, 6, 8583–8590. [Google Scholar] [CrossRef]
- Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2013, 43, 934–959. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232–1240. [Google Scholar] [CrossRef]
- Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 2015, 112, 42–45. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Lin, S. Defective Hexagonal Boron Nitride Nanosheet on Ni(111) and Cu(111): Stability, Electronic Structures, and Potential Applications. ACS Appl. Mater. Interfaces 2016, 8, 24238–24247. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef]
- Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B. Boron Nitrides—Properties, Synthesis and Applications. In High Performance Non-Oxide Ceramics II; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–45. [Google Scholar]
- Eichler, J.; Lesniak, C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 2008, 28, 1105–1109. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.I.-J.; Yamoah, M.A.; Li, Q.; Karamlou, A.H.; Dinh, T.; Kannan, B.; Braumüller, J.; Kim, D.; Melville, A.J.; Muschinske, S.E.; et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 2022, 21, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Bray, K.; Ford, M.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2015, 11, 37–41. [Google Scholar] [CrossRef]
- Kim, S.; Fröch, J.E.; Christian, J.; Straw, M.; Bishop, J.; Totonjian, D.; Watanabe, K.; Taniguchi, T.; Toth, M.; Aharonovich, I. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623. [Google Scholar] [CrossRef]
- Fröch, J.E.; Kim, S.; Mendelson, N.; Kianinia, M.; Toth, M.; Aharonovich, I. Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano 2020, 14, 7085–7091. [Google Scholar] [CrossRef]
- White, S.; Stewart, C.; Solntsev, A.S.; Li, C.; Toth, M.; Kianinia, M.; Aharonovich, I. Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica 2021, 8, 1153. [Google Scholar] [CrossRef]
- Caldwell, D.J.; Kretinin, V.A.; Chen, Y.; Giannini, V.; Fogler, M.M.; Francescato, Y.; Ellis, T.C.; Tischler, G.J.; Woods, R.C.; Giles, J.A.; et al. Sub-diffractional volume-confined polaritons in the naural hyperbolic material hexagonal boron nitride. Nat. Commun. 2014, 5, 5221. [Google Scholar] [CrossRef]
- Giles, A.J.; Dai, S.; Vurgaftman, I.; Hoffman, T.; Liu, S.; Lindsay, L.; Ellis, C.T.; Assefa, N.; Chatzakis, I.; Reinecke, T.L.; et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 2018, 17, 134–139. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Chen, Y.; Gu, B.-L.; Duan, W. Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices. J. Am. Chem. Soc. 2009, 131, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Lett. 2010, 10, 5049–5055. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, H.; Atta, M.M.; Osman, W.; Zhang, Q. Two-dimensional quantum dots for highly efficient heterojunction solar cells. J. Colloid Interface Sci. 2021, 603, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Alem, N.; Ramasse, Q.M.; Seabourne, C.R.; Yazyev, O.V.; Erickson, K.; Sarahan, M.C.; Kisielowski, C.; Scott, A.J.; Louie, S.G.; Zettl, A. Subangstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride. Phys. Rev. Lett. 2012, 109, 205502. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Demin, V.; Bellucci, S. Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: Modeling of structures and electronic properties. Sci. Rep. 2016, 6, 38029. [Google Scholar] [CrossRef]
- Payod, R.B.; Saroka, V.A. Ab Initio Study of Absorption Resonance Correlations between Nanotubes and Nanoribbons of Graphene and Hexagonal Boron Nitride. Semiconductors 2019, 53, 1929–1934. [Google Scholar] [CrossRef]
- Barone, V.; Peralta, J.E. Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties. Nano Lett. 2008, 8, 2210–2214. [Google Scholar] [CrossRef]
- Li, L.L.; Yu, X.F.; Yang, X.J.; Zhang, X.H.; Xu, X.W.; Jin, P.; Zhao, J.L.; Wang, X.X.; Tang, C.C. Electronic properties and relative stabilities of heterogeneous edge-decorated zigzag boron nitride nanoribbons. J. Alloys Compd. 2015, 649, 1130–1135. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Tang, C.C.; Zhi, C.Y. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Lei, Z.; Xu, S.; Wan, J.; Wu, P. Facile preparation and multifunctional applications of boron nitride quantum dots. Nanoscale 2015, 7, 18902–18907. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Yadav, S.K.; Savu, R.; Moshkalev, S.A. Mechanical pressure induced chemical cutting of boron nitride sheets into boron nitride quantum dots and optical properties. J. Alloys Compd. 2016, 683, 38–45. [Google Scholar] [CrossRef]
- Thangasamy, P.; Santhanam, M.; Sathish, M. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS Appl. Mater. Interfaces 2016, 8, 18647–18651. [Google Scholar] [CrossRef]
- Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. One-Step Synthesis of Fluorescent Boron Nitride Quantum Dots via a Hydrothermal Strategy Using Melamine as Nitrogen Source for the Detection of Ferric Ions. Langmuir 2017, 33, 10673–10678. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, L.; Li, F.-F.; Cui, W.-R.; Liang, R.-P.; Qiu, J.-D. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS Appl. Mater. Interfaces 2018, 10, 7315–7323. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hu, C.; Wang, X. One-pot solvothermal synthesis of water-soluble boron nitride nanosheets and fluorescent boron nitride quantum dots. Mater. Lett. 2018, 234, 306–310. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Park, J.H.; Neupane, R.; Reyes, C.A.D.L.; Sudeep, P.M.; Paulose, M.; Martí, A.A.; Tiwary, C.S.; Khabashesku, V.N.; Varghese, O.K.; et al. Fluorinated Boron Nitride Quantum Dots: A New 0D Material for Energy Conversion and Detection of Cellular Metabolism. Part. Part. Syst. Charact. 2019, 36, 1800346. [Google Scholar] [CrossRef]
- Ahmad, P.; Khandaker, M.U.; Jamil, S.; Rehman, F.; Muhammad, N.; Ullah, Z.; Khan, M.A.R.; Khan, G.; Alotaibi, M.A.; Alharthi, A.I.; et al. Dual role of Magnesium as a catalyst and precursor with enriched boron in the synthesis of Magnesium diboride nanoparticles. Ceram. Int. 2020, 46, 26809–26812. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Y.; Zhang, S.; Ross, I.M.; Ong, A.C.M.; Allwood, D.A. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small 2013, 10, 60–65. [Google Scholar] [CrossRef]
- Liu, B.; Yan, S.; Song, Z.; Liu, M.; Ji, X.; Yang, W.; Liu, J. One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology. Chem.—A Eur. J. 2016, 22, 18899–18907. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, Y.; Hou, X.; Yang, T.; Liang, T.; Zheng, J. A wide range photoluminescence intensity-based temperature sensor developed with BN quantum dots and the photoluminescence mechanism. Sens. Actuators B Chem. 2020, 304, 127353. [Google Scholar] [CrossRef]
- Zhang, X.; An, L.; Bai, C.; Chen, L.; Yu, Y. Hexagonal boron nitride quantum dots: Properties, preparation and applications. Mater. Today Chem. 2021, 20, 100425. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Elhaes, H.; Ibrahim, M. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations. Chem. Phys. Lett. 2018, 695, 138–148. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Saroka, V.A.; Ali, M.; Teleb, N.H.; Elhaes, H.; Ibrahim, M.A. Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study. Phys. E Low-Dimens. Syst. Nanostructures 2018, 108, 339–346. [Google Scholar] [CrossRef]
- Nguyen, V.; Yan, L.; Zhao, N.; van Canh, N.; Hang, N.T.N.; Le, P.H. Tuning photoluminescence of boron nitride quantum dots via surface functionalization by femtosecond laser ablation. J. Mol. Struct. 2021, 1244, 130922. [Google Scholar] [CrossRef]
- Krepel, D.; Kalikhman-Razvozov, L.; Hod, O. Edge Chemistry Effects on the Structural, Electronic, and Electric Response Properties of Boron Nitride Quantum Dots. J. Phys. Chem. C 2014, 118, 21110–21118. [Google Scholar] [CrossRef]
- Liu, Y.; Bhowmick, S.; Yakobson, B.I. BN White Graphene with “Colorful” Edges: The Energies and Morphology. Nano Lett. 2011, 11, 3113–3116. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Zhu, J. Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: Algorithm, hydrogen passivation, and temperature effects. Nanoscale 2018, 10, 17683–17690. [Google Scholar] [CrossRef]
- Xi, Y.; Zhao, M.; Wang, X.; Li, S.; He, X.; Wang, Z.; Bu, H. Honeycomb-Patterned Quantum Dots beyond Graphene. J. Phys. Chem. C 2011, 115, 17743–17749. [Google Scholar] [CrossRef]
- Xu, P.; Yu, S.S.; Qiao, L. Electronic properties of a patchwork of armchair graphene nanoribbon and triangular boron nitride nanoflake. Mol. Simul. 2013, 39, 487–494. [Google Scholar] [CrossRef]
- Xi, Y.; Zhao, X.; Wang, A.; Wang, X.; Bu, H.; Zhao, M. Tuning the electronic and magnetic properties of triangular boron nitride quantum dots via carbon doping. Phys. E Low-Dimens. Syst. Nanostructures 2013, 49, 52–60. [Google Scholar] [CrossRef]
- Yamijala, S.S.; Bandyopadhyay, A.; Pati, S.K. Structural Stability, Electronic, Magnetic, and Optical Properties of Rectangular Graphene and Boron Nitride Quantum Dots: Effects of Size, Substitution, and Electric Field. J. Phys. Chem. C 2013, 117, 23295–23304. [Google Scholar] [CrossRef]
- Yamijala, S.S.; Bandyopadhyay, A.; Pati, S.K. Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: A DFT study. Chem. Phys. Lett. 2014, 603, 28–32. [Google Scholar] [CrossRef]
- Chakraborty, D.; Chattaraj, P.K. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties. J. Physics Condens. Matter 2017, 29, 425201. [Google Scholar] [CrossRef] [PubMed]
- Degheidy, A.R.; Elkenany, E.B. Pressure and composition dependence of electronic, optical and mechanical properties of GaP Sb1− alloys. Thin Solid Films 2016, 599, 113–118. [Google Scholar] [CrossRef]
- Pan, C.; Long, M.; He, J. Enhanced thermoelectric properties in boron nitride quantum-dot. Results Phys. 2017, 7, 1487–1491. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Hu, R.; Wang, C.; Hao, J.; Wang, K.; Luo, X. Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Adv. Funct. Mater. 2018, 28, 1801407. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, Y.; Zhang, X.; Lan, W.; Yu, X.; Xie, B.; Wang, K.; Luo, X. White-Light-Emitting Diodes from Directional Heat-Conducting Hexagonal Boron Nitride Quantum Dots. ACS Appl. Nano Mater. 2019, 3, 814–819. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Yamijala, S.S.R.K.C.; Pati, S.K. Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: A theoretical study. Phys. Chem. Chem. Phys. 2013, 15, 13881–13887. [Google Scholar] [CrossRef][Green Version]
- Chakraborty, D.; Chattaraj, P.K. Sequestration and Activation of Small Gas Molecules on BN-Flakes and the Effect of Various Metal Oxide Molecules therein. J. Phys. Chem. C 2016, 120, 27782–27799. [Google Scholar] [CrossRef]
- Neek-Amal, M.; Beheshtian, J.; Sadeghi, A.; Michel, K.H.; Peeters, F.M. Boron Nitride Monolayer: A Strain-Tunable Nanosensor. J. Phys. Chem. C 2013, 117, 13261–13267. [Google Scholar] [CrossRef]
- Matsoso, J.B.; Garcia-Martinez, C.; Mongwe, H.T.; Toury, B.; Serbena, M.P.J.; Journet, C. Room temperature ammonia vapour detection on hBN flakes. J. Phys. Mater. 2021, 4, 044007. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Younis, W.O.; Saroka, V.A.; Teleb, N.H.; Yunoki, S.; Zhang, Q. Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: Wastewater treatment and water splitting. Phys. Chem. Chem. Phys. 2020, 22, 2566–2579. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Dai, P.; Jiang, X.; Wang, X.; Zhang, C.; Tang, D.; Weng, Q.; Wang, X.; Pakdel, A.; Tang, C.; et al. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J. Mater. Chem. A 2016, 4, 1469–1478. [Google Scholar] [CrossRef]
- Ikram, M.; Hassan, J.; Imran, M.; Haider, J.; Ul-Hamid, A.; Shahzadi, I.; Ikram, M.; Raza, A.; Qumar, U.; Ali, S. 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: Synthesis, properties and catalytic application for the treatment of industrial wastewater. Appl. Nanosci. 2020, 10, 3525–3528. [Google Scholar] [CrossRef]
- Osman, W.; Abdelsalam, H.; Ali, M.; Teleb, N.; Yahia, I.; Ibrahim, M.; Zhang, Q. Electronic and magnetic properties of graphene quantum dots doped with alkali metals. J. Mater. Res. Technol. 2021, 11, 1517–1533. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Zhang, Q.F. Properties and applications of quantum dots derived from two-dimensional materials. Adv. Phys. X 2022, 7, 2048966. [Google Scholar] [CrossRef]
- Park, H.; Wadehra, A.; Wilkins, J.W.; Neto, A.H.C. Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride. Appl. Phys. Lett. 2012, 100, 253115. [Google Scholar] [CrossRef]
- Tan, B.; Wu, Y.; Gao, F.; Yang, H.; Hu, Y.; Shang, H.; Zhang, X.; Zhang, J.; Li, Z.; Fu, Y.; et al. Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping. ACS Appl. Mater. Interfaces 2022, 14, 16453–16461. [Google Scholar] [CrossRef]
- Hayee, F.; Yu, L.; Zhang, J.L.; Ciccarino, C.J.; Nguyen, M.; Marshall, A.F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T.F.; et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539. [Google Scholar] [CrossRef]
- Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.; et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.E.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Petersson, G.A.; Nakatsuji, H.J.R.A.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Osman, W.; Elkader, O.H.A.; Zhang, Q. Vibrationally-resolved absorption and fluorescence spectra of chemically modified 2D hexagonal boron nitride quantum dots. Chem. Phys. Lett. 2022, 806, 140025. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef]
- Szarek, P.; Suwannawong, S.; Doi, K.; Kawano, S. Theoretical Study on Physicochemical Aspects of a Single Molecular Junction: Application to the Bases of ssDNA. J. Phys. Chem. C 2013, 117, 10809–10817. [Google Scholar] [CrossRef]
- El-Mansy, M.A.M.; Osman, W.; Abdelsalam, H. The electronic and optical absorption properties of pristine, homo and hetero Bi-nanoclusters. Chem. Phys. 2021, 544, 111113. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [PubMed]
Struct. | Ea (eV) | d (Å) | Q (e) | Eg (eV) |
---|---|---|---|---|
shBN (reference) | -- | -- | -- | |
shBN-NO2-a | 0.32 | 2.88 | −0.34 | 3.07 α, 1.95 β |
shBN-NO2-b | 0.32 | 3.07 | −0.39 | 2.98 α, 1.85 β |
shBN-acet | 0.68 | 2.91 | −0.02 | 5.61 |
shBN-P-NO2-a | 0.38 | 2.91 | −0.25 | 3.35 α, 2.16 β |
shBN-P-NO2-b | 0.28 | 2.93 | −0.17 | 3.55 α, 2.37 β |
shBN-P-acet | 0.61 | 2.93 | 0.002 | 5.49 |
shBN-vac-NO2-a | 2.07 | 1.57 | −0.54 | 4.29 |
shBN-vac-NO2-b | 4.07 | 1.43 | −0.40 | 3.17 |
shBN-vac-acet. | 2.30 | 1.39 | −0.14 | 3.51 |
shBN-O-NO2-a | 4.95 | 1.57 | −0.53 | 4.62 |
shBN-O-NO2-b | 1.53 | 1.53 | −0.61 | 4.22 |
shBN-O-acet | 2.94 | 1.46 | −0.38 | 3.75 α, 5.67 β |
shBN-Si-NO2-a | 2.42 | 1.90 | −0.52 | 4.34 |
shBN-Si-NO2-b | 2.72 | 1.80 | −0.53 | 3.77 |
shBN-Si-acet | 0.64 | 1.81 | −0.19 | 2.45 α, 3.93 β |
shBN-P-C-NO2-a | 2.99 | 1.55 | −0.73 | 4.19 |
shBN-P-C-NO2-b | 2.17 | 1.67 | −0.66 | 2.97 |
shBN-P-C-acet | 0.67 | 2.71 | 0.02 | 2.44 α, 5.58 β |
shBN-Si-C-NO2-a | 1.59 | 1.54 | −0.51 | 3.41 α, 3.16 β |
shBN-Si-C-NO2-b | 0.99 | 1.98 | −0.55 | 1.41 α, 4.18 β |
shBN-Si-C-acet | 0.84 | 2.83 | 0.003 | 3.08 |
Struct. | Ea (eV) | Q (e) | d (Å) | Eg (eV) |
---|---|---|---|---|
shBN-CH4-a | 0.19 | −0.007 | 2.90 | 5.82 |
shBN-CH4-b | 0.20 | −0.005 | 3.01 | 5.82 |
shBN-eth | 0.57 | 0.012 | 2.69 | 5.87 |
shBN-P-CH4-a | 0.19 | −0.008 | 3.01 | 5.74 |
shBN-P-CH4-b | 0.19 | −0.007 | 2.99 | 5.75 |
shBN-P-eth | 0.63 | 0.018 | 2.78 | 5.68 |
shBN-vac-CH4-a | 0.28 | −0.008 | 3.03 | 3.72 α, 4.17 β |
shBN-vac-CH4-b | 0.19 | −0.009 | 2.97 | 3.78 α, 4.27 β |
shBN-vac-eth | 0.71 | 0.015 | 3.01 | 3.80 α, 4.16 β |
shBN-O-CH4-a | 0.59 | −0.037 | 2.76 | 2.20 α, 5.93 β |
shBN-O-CH4-b | 0.34 | 0.008 | 3.11 | 5.59 α, 4.54 β |
shBN-O-eth | 1.09 | 0.012 | 2.49 | 2.21 α, 6.04 β |
shBN-Si-CH4-a | 0.19 | −0.006 | 2.89 | 5.27 α, 2.59 β |
shBN-Si-CH4-b | 0.18 | −0.003 | 3.00 | 5.28 α, 2.59 β |
shBN-Si-eth | 0.59 | −0.019 | 2.14 | 5.20 α, 2.66 β |
shBN-P-C-CH4-a | 0.22 | −0.012 | 2.79 | 2.47 α, 5.78 β |
shBN-P-C-CH4-b | 0.19 | −0.006 | 3.04 | 2.46 α, 5.78 β |
shBN-P-C-eth | 0.69 | 0.030 | 2.51 | 2.51 α, 5.78 β |
shBN-Si-C-CH4-a | 0.22 | −0.007 | 2.96 | 2.85 |
shBN-Si-C-CH4-b | 0.19 | −0.01 | 3.01 | 2.82 |
shBN-Si-C-eth | 0.61 | 0.005 | 2.87 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, H.; Saroka, V.A.; Atta, M.M.; Abd-Elkader, O.H.; Zaghloul, N.S.; Zhang, Q. Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals 2022, 12, 1684. https://doi.org/10.3390/cryst12111684
Abdelsalam H, Saroka VA, Atta MM, Abd-Elkader OH, Zaghloul NS, Zhang Q. Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals. 2022; 12(11):1684. https://doi.org/10.3390/cryst12111684
Chicago/Turabian StyleAbdelsalam, Hazem, Vasil A. Saroka, Mohamed M. Atta, Omar H. Abd-Elkader, Nouf S. Zaghloul, and Qinfang Zhang. 2022. "Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors" Crystals 12, no. 11: 1684. https://doi.org/10.3390/cryst12111684
APA StyleAbdelsalam, H., Saroka, V. A., Atta, M. M., Abd-Elkader, O. H., Zaghloul, N. S., & Zhang, Q. (2022). Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals, 12(11), 1684. https://doi.org/10.3390/cryst12111684