Fabrication of Step−Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kibler, B.; Lemière, A.; Gomes, J.T.; Gaponov, D.; Lavoute, L.; Désévédavy, F.; Smektala, F. Octave−Spanning Coherent Supercontinuum Generation in a Step−Index Tellurite Fiber and towards Few−Cycle Pulse Compression at 2 μm. Opt. Commun. 2021, 488, 126853. [Google Scholar] [CrossRef]
- Heidt, A.M.; Rothhardt, J.; Hartung, A.; Bartelt, H.; Rohwer, E.G.; Limpert, J.; Tünnermann, A. High Quality Sub−Two Cycle Pulses from Compression of Supercontinuum Generated in All−Normal Dispersion Photonic Crystal Fiber. Opt. Express 2011, 19, 13873–13879. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.R.; Rajagopalan, N.; Markos, C.; Israelsen, N.M.; Rodrigo, P.J.; Woyessa, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Weinell, C.E.; Kiil, S.; et al. Non−Destructive Subsurface Inspection of Marine and Protective Coatings Using Near− and Mid−Infrared Optical Coherence Tomography. Coatings 2021, 11, 877. [Google Scholar] [CrossRef]
- Su, R.; Kirillin, M.; Chang, E.W.; Sergeeva, E.; Yun, S.H.; Mattsson, L. Perspectives of Mid−Infrared Optical Coherence Tomography for Inspection and Micrometrology of Industrial Ceramics. Opt. Express 2014, 22, 15804–15819. [Google Scholar] [CrossRef] [Green Version]
- Zorin, I.; Brouczek, D.; Geier, S.; Nohut, S.; Eichelseder, J.; Huss, G.; Schwentenwein, M.; Heise, B. Mid−Infrared Optical Coherence Tomography as a Method for Inspection and Quality Assurance in Ceramics Additive Manufacturing. Open Ceram. 2022, 12, 100311. [Google Scholar] [CrossRef]
- Jahromi, K.E.; Pan, Q.; Khodabakhsh, A.; Sikkens, C.; Assman, P.; Cristescu, S.M.; Moselund, P.M.; Janssens, M.; Verlinden, B.E.; Harren, F.J.M. A Broadband Mid−Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real−Time Quality Control for Fruit Storage. Sensors 2019, 19, 2334. [Google Scholar] [CrossRef] [Green Version]
- Seddon, A.B.; Napier, B.; Lindsay, I.; Lamrini, S.; Moselund, P.M.; Stone, N.; Bang, O.; Farries, M. Prospective on Using Fibre Mid−Infrared Supercontinuum Laser Sources for in Vivo Spectral Discrimination of Disease. Analyst 2018, 143, 5874–5887. [Google Scholar] [CrossRef]
- Sotobayashi, H.; Chujo, W.; Konishi, A.; Ozeki, T. Wavelength−Band Generation and Transmission of 3.24−Tbit/s (81−Channel WDM × 40−Gbit/s) Carrier−Suppressed Return−to−Zero Format by Use of a Single Supercontinuum Source for Frequency Standardization. J. Opt. Soc. Am. B 2002, 19, 2803–2809. [Google Scholar] [CrossRef]
- Huang, C.; Liao, M.; Bi, W.; Li, X.; Hu, L.; Zhang, L.; Wang, L.; Qin, G.; Xue, T.; Chen, D.; et al. Ultraflat, Broadband, and Highly Coherent Supercontinuum Generation in All−Solid Microstructured Optical Fibers with All−Normal Dispersion. Photonics Res. 2018, 6, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.; Chang, E.; Yun, S. Long−Wavelength Optical Coherence Tomography at 1.7 μm for Enhanced Imaging Depth. Opt. Express 2008, 16, 19712–19723. [Google Scholar] [CrossRef]
- Rampur, A.; Spangenberg, D.M.; Sierro, B.; Hänzi, P.; Klimczak, M.; Heidt, A.M. Perspective on the next Generation of Ultra−Low Noise Fiber Supercontinuum Sources and Their Emerging Applications in Spectroscopy, Imaging, and Ultrafast Photonics. Appl. Phys. Lett. 2021, 118, 240504. [Google Scholar] [CrossRef]
- Møller, U.; Bang, O. Intensity Noise in Normal−Pumped Picosecond Supercontinuum Generation, Where Higher−Order Raman Lines Cross into Anomalous Dispersion Regime. Electron. Lett. 2013, 49, 63–65. [Google Scholar] [CrossRef]
- Heidt, A.M.; Hartung, A.; Bosman, G.W.; Krok, P.; Rohwer, E.G.; Schwoerer, H.; Bartelt, H. Coherent Octave Spanning Near−Infrared and Visible Supercontinuum Generation in All−Normal Dispersion Photonic Crystal Fibers. Opt. Express 2011, 19, 3775–3787. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liao, M.; Bi, W.; Hu, L.; Bi, W.; Li, X.; Chen, D.; Zhang, L.; Huang, C.; Gao, W.; et al. Asterisk−Shaped Microstructured Fiber for an Octave Coherent Supercontinuum in a Sub−Picosecond Region. Opt. Lett. 2018, 43, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Corwin, K.L.; Newbury, N.R.; Dudley, J.M.; Coen, S.; Diddams, S.A.; Weber, K.; Windeler, R.S. Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber. Phys. Rev. Lett. 2003, 90, 113904. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Wei, L.; Hu, J.; Shi, J.; Feng, X. Highly Coherent Visible Supercontinuum Generation in a Micrometer−Core Borosilicate Glass Photonic Crystal Fiber. J. Opt. Soc. Am. B 2021, 38, 145–151. [Google Scholar] [CrossRef]
- Xiao, K.; Ye, Y.; Min, R. Broadband Coherent Mid−Infrared Supercontinuum Generation in All−Chalcogenide Microstructured Fiber with All−Normal Dispersion. Front. Phys. 2022, 10, 557. [Google Scholar] [CrossRef]
- Zhang, N.; Peng, X.; Wang, Y.; Dai, S.; Yuan, Y.; Su, J.; Li, G.; Zhang, P.; Yang, P.; Wang, X. Ultrabroadband and Coherent Mid−Infrared Supercontinuum Generation in Te−Based Chalcogenide Tapered Fiber with All−Normal Dispersion. Opt. Express 2019, 27, 10311–10319. [Google Scholar] [CrossRef]
- Jiang, X.; Joly, N.; Finger, M.; Babic, F.; Pang, M.; Sopalla, R.; Frosz, M.H.; Poulain, S.; Poulain, M.; Cardin, V.; et al. Supercontinuum Generation in ZBLAN Glass Photonic Crystal Fiber with Six Nanobore Cores. Opt. Lett. 2016, 41, 4245–4248. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Liao, M.; Liu, Y.; Li, X.; Bi, W.; Yu, F.; Zhang, L.; Jiang, Y.; Wang, Z.; et al. Step−Index Fluoride Fibers with All−Normal Dispersion for Coherent Mid−Infrared Supercontinuum Generation. J. Opt. Soc. Am. B 2019, 36, 2972–2980. [Google Scholar] [CrossRef]
- Strutynski, C.; Froidevaux, P.; Désévédavy, F.; Jules, J.-C.; Gadret, G.; Bendahmane, A.; Tarnowski, K.; Kibler, B.; Smektala, F. Tailoring Supercontinuum Generation beyond 2 μm in Step−Index Tellurite Fibers. Opt. Lett. 2017, 42, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Saini, T.S.; Tuan, T.H.; Xing, L.; Phuoc, N.; Hoa, T.; Suzuki, T.; Ohishi, Y. Coherent Mid−Infrared Supercontinuum Spectrum Using a Step−Index Tellurite Fiber with All−Normal Dispersion. Appl. Phys. Express 2018, 11, 102501. [Google Scholar] [CrossRef]
- Feng, S.; Liu, C.; Cui, J.; Xu, Y.; Li, M.; Xiao, X.; Ma, W.; Guo, H. Intense 2.71−μm Fluorescence Emission in Low Hydroxyl Heavily Er3+−Doped Fluorotellurite Glass for Mid−Infrared Fiber Laser. J. Non. Cryst. Solids 2022, 586, 121569. [Google Scholar] [CrossRef]
- Guo, X.; Jia, Z.; Jiao, Y.; Li, Z.; Yao, C.; Hu, M. 25.8 W All−Fiber Mid−Infrared Supercontinuum Light Sources Based on Fluorotellurite Fibers. IEEE Photonics Technol. Lett. 2022, 34, 367–370. [Google Scholar] [CrossRef]
- Strutynski, C.; Picot−Clémente, J.; Lemiere, A.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.C.; Kibler, B.; Smektala, F. Fabrication and Characterization of Step−Index Tellurite Fibers with Varying Numerical Aperture for near− and Mid−Infrared Nonlinear Optics. J. Opt. Soc. Am. B 2016, 33, 12–18. [Google Scholar] [CrossRef]
- Huang, F.; Guo, Y.; Ma, Y.; Zhang, L.; Zhang, J. Highly Er3+−Doped ZrF4−Based Fluoride Glasses for 2.7 μm Laser Materials. Appl. Opt. 2013, 52, 1399–1403. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Xue, T.; Gao, J.; Gao, W.; Hu, L.; Liao, M. Low Threshold Mid−Infrared Supercontinuum Generation in Short Fluoride−Chalcogenide Multimaterial Fibers. Opt. Express 2014, 22, 24179–24191. [Google Scholar] [CrossRef]
- Yan, X.; Qin, G.; Liao, M.; Suzuki, T.; Ohishi, Y. Transient Raman Response and Soliton Self−Frequency Shift in Tellurite Microstructured Fiber. J. Appl. Phys. 2010, 108, 123110. [Google Scholar] [CrossRef]
Glass Compositions (mol%) | Notation |
---|---|
78TeO2−5Bi2O5−10.5ZnO−1.5ZnF2−5Li2O | TBZL |
69TeO2−6WO3−15ZnO−5ZnF2−5Na2O | TWZN |
60TeO2−30WO3−10PbO−3NaF | TWPN |
65TeO2−13ZnO−5ZnF2−5PbF2−8Nb2O5−4GeO2 | TZPNG |
Glass | Tg (°C) | Tx (°C) | ∆T (°C) | TEC (×10−6 K−1) | n (1552 nm) |
---|---|---|---|---|---|
TBZL | 301 | 440 | 139 | 17.4 | 2.078 |
TWZN | 301 | 445 | 144 | 17.3 | 2.002 |
TWPN | 370 | >500 | >130 | 14.0 | 2.128 |
TZPNG | 350 | >500 | >150 | 13.5 | 2.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liao, M.; Han, J.; Luo, J. Fabrication of Step−Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum. Crystals 2022, 12, 1649. https://doi.org/10.3390/cryst12111649
Li Y, Liao M, Han J, Luo J. Fabrication of Step−Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum. Crystals. 2022; 12(11):1649. https://doi.org/10.3390/cryst12111649
Chicago/Turabian StyleLi, Yu, Meisong Liao, Jianjun Han, and Jie Luo. 2022. "Fabrication of Step−Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum" Crystals 12, no. 11: 1649. https://doi.org/10.3390/cryst12111649
APA StyleLi, Y., Liao, M., Han, J., & Luo, J. (2022). Fabrication of Step−Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum. Crystals, 12(11), 1649. https://doi.org/10.3390/cryst12111649