Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Heuer, A.H.; Rühle, M.; Marshall, D.B. On the Thermoelastic Martensitic Transformation in Tetragonal Zirconia. J. Am. Ceram. Soc. 1990, 73, 1084–1093. [Google Scholar] [CrossRef]
- Garvie, R.C.; Hannink, R.H.J.; Pascoe, R.T. Ceramic Steel? Nature 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Li, Q.; Hao, X.; Gui, Y.; Qiu, H.; Ling, Y.; Zheng, H.; Omran, M.; Gao, L.; Chen, J.; Chen, G. Controlled sintering and phase transformation of yttria-doped tetragonal zirconia polycrystal material. Ceram. Int. 2021, 47, 27188–27194. [Google Scholar] [CrossRef]
- Yoshimura, M.; Yashima, M.; Noma, T.; Somiya, S. Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-RO1.5 systems (R = rare earths). J. Mater. Sci. 1990, 25, 2011–2016. [Google Scholar] [CrossRef]
- Shi, Q.; Yuan, W.; Chao, X.; Zhu, Z. Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. J. Sol. Gel Sci. Technol. 2017, 84, 341–348. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Liu, Y.; Ningm, X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surf. Coat. Technol. 2020, 403, 126387. [Google Scholar] [CrossRef]
- Donat, L.; Osswald, B.; Kern, F. 1Yb-2Sm-TZP, a new co-stabilized zirconia material with high toughness and low temperature degradation resistance. J. Eur. Ceram. Soc. 2022, in press. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, H.; Zhang, Y.; Zhang, F.; Gao, L.; Omran, M.; Chen, G. Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Ling, Y.; Li, Q.; Zheng, H.; Omran, M.; Gao, L.; Chen, J.; Chen, G. Optimisation on the stability of CaO-doped partially stabilised zirconia by microwave heating. Ceram. Int. 2021, 47, 8067–8074. [Google Scholar] [CrossRef]
- Li, Q.; Ling, Y.; Zheng, H.; Chen, G.; Chen, J.; Koppala, S.; Jiang, Q.; Li, K.; Omran, M.; Gao, L. Phase microstructure and morphology evolution of MgO-PSZ ceramics during the microwave sintering process. Ceram. Int. 2021, 47, 15849–15858. [Google Scholar] [CrossRef]
- Yashima, M.; Ohtake, K.; Kakihana, M.; Arashi, H.; Yoshimura, M. Determination of tetragonal-cubic phase boundary of Zr1−XRXO2−X/2 (R= Nd, Sm, Y, Er and Yb) by Raman scattering. J. Phys. Chem. Solids 1996, 57, 17–24. [Google Scholar] [CrossRef]
- Wang, C.; Zinkevich, M.; Aldinger, F. Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics. Pure Appl. Chem. 2007, 79, 1731–1753. [Google Scholar] [CrossRef]
- Katamura, J.; Seri, T.; Sakuma, T. The Cubic-Tetragonal Phase Equilibria in the ZrO2–R2O3 (R=Y, Gd, Sm, Nd) Systems. J. Phase Equilibria 1995, 16, 315–319. [Google Scholar] [CrossRef]
- Scott, H.G. Phase Relationships in the Yttria-rich Part of the Yttria–Zirconia System. J. Mater. Sci. 1977, 12, 311–316. [Google Scholar] [CrossRef]
- Andrievskaya, E.R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc. 2008, 28, 2363–2388. [Google Scholar] [CrossRef]
- Borik, M.A.; Bublik, V.T.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Osiko, V.V.; Seryakov, S.V.; Tabachkova, N.Y. Change in the phase composition, structure and mechanical properties of directed melt crystallised partially stabilised zirconia crystals depending on the concentration of Y2O3. J. Eur. Ceram. Soc. 2015, 35, 1889–1894. [Google Scholar] [CrossRef]
- Borik, M.A.; Chislov, A.S.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Ryabochkina, P.A.; Sidorova, N.V.; Tabachkova, N.Y. Effect of heat treatment on the structure and mechanical properties of partially gadolinia-stabilized zirconia crystals. J. Asian Ceram. Soc. 2021, 9, 559–569. [Google Scholar] [CrossRef]
- Borik, M.A.; Borichevskij, V.P.; Bublik, V.T.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Ryabochkina, P.A.; Sidorova, N.V.; Tabachkova, N.Y. Anisotropy of the mechanical properties and features of the tetragonal to monoclinic transition in partially stabilized zirconia crystals. J. Alloy Compd. 2019, 792, 1255–1260. [Google Scholar] [CrossRef]
- Osiko, V.V.; Borik, M.A.; Lomonova, E.E. Synthesis of Refractory Materials by Skull Melting Technique. In Springer Handbook of Crystal Growth; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; pp. 433–477. [Google Scholar]
- Niihara, K.A. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J. Mater. Sci. Lett. 1983, 2, 2221–2223. [Google Scholar] [CrossRef]
- Borik, M.A.; Lomonova, E.E.; Osiko, V.V.; Panov, V.A.; Porodinkov, O.E.; Vishnyakova, M.A.; Voron’ko, Y.K.; Voronov, V.V. Partially stabilized zirconia single crystals: Growth from the melt and investigation of the properties. J. Cryst. Growth 2005, 275, e2173–e2179. [Google Scholar] [CrossRef]
- Hemberger, Y.; Wichtner, N.; Berthold, C.; Nickel, K.G. Quantification of yttria in stabilized zirconia by Raman spectroscopy. Int. J. Appl. Ceram. Technol. 2016, 13, 116–124. [Google Scholar] [CrossRef]
- Shih, H.R.; Chang, Y.S. Structure and photoluminescence properties of Sm3+ ion-doped YInGe2O7 phosphor. Materials 2017, 10, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulliger, J. Crystal chemistry and crystal growth of optical materials. Chimia 2001, 55, 1025–1028. [Google Scholar] [CrossRef]
- Liu, Z.; Stevens-Kalceff, M.; Riesen, H. Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl: Sm3+ X-ray storage phosphor. J. Phys. Chem. C 2012, 116, 8322–8331. [Google Scholar] [CrossRef]
- Chan, S.K.; Fang, Y.; Grimsditch, M.; Li, Z.; Nevitt, M.V.; Robertson, W.M.; Zouboulis, E.S. Temperature dependence of the elastic moduli of monoclinic zirconia. J. Am. Ceram. Soc. 1991, 74, 1742–1744. [Google Scholar] [CrossRef]
Specimen | Phase | Wt, % | a, Å | c, Å | c/√2a |
---|---|---|---|---|---|
(ZrO2)0.963(Sm2O3)0.037 | t t‘ | 85 ± 5 15 ± 5 | 3.6062(1) 3.6426(2) | 5.1866(2) 5.1695(5) | 1.0170 1.0035 |
(ZrO2)0.96(Sm2O3)0.04 | t t‘ | 75 ± 5 25 ± 5 | 3.6063(1) 3.6429(2) | 5.1854(2) 5.1692(5) | 1.0167 1.0134 |
(ZrO2)0.95(Sm2O3)0.05 | t t‘ | 70 ± 5 30 ± 5 | 3.6068(1) 3.6434(2) | 5.1815(2) 5.1683(5) | 1.0158 1.0031 |
(ZrO2)0.94(Sm2O3)0.06 | t t‘ | 60 ± 5 40 ± 5 | 3.6073(1) 3.6438(2) | 5.1767(2) 5.1672(5) | 1.0147 1.0028 |
Sm2O3 Content, mol.% | Microhardness HV, GPa | Fracture Toughness, MPa∙m1/2 | |
---|---|---|---|
<100> | <110> | ||
2.0 | 8.65 ± 0.30 | 5.0 ± 0.5 | 4.0 ± 0.5 |
2.8 | 8.75 ± 0.30 | 8.5 ± 0.5 | 7.5 ± 0.5 |
3.0 | 9.50 ± 0.30 | 10.0 ± 0.5 | 9.5 ± 0.5 |
3.2 | 10.75 ± 0.30 | 11.5 ± 0.5 | 11.0 ± 0.5 |
3.7 | 11.30 ± 0.30 | 14.2 ± 0.5 | 13.0 ± 0.5 |
4.0 | 12.15 ± 0.30 | 13.5 ± 0.5 | 10.0 ± 0.5 |
5.0 | 12.30 ± 0.30 | 11.5 ± 0.5 | 9.5 ± 0.5 |
6.0 | 12.45 ± 0.30 | 8.0 ± 0.5 | 7.5 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borik, M.; Chislov, A.; Kulebyakin, A.; Lomonova, E.; Milovich, F.; Myzina, V.; Ryabochkina, P.; Sidorova, N.; Tabachkova, N. Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals. Crystals 2022, 12, 1630. https://doi.org/10.3390/cryst12111630
Borik M, Chislov A, Kulebyakin A, Lomonova E, Milovich F, Myzina V, Ryabochkina P, Sidorova N, Tabachkova N. Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals. Crystals. 2022; 12(11):1630. https://doi.org/10.3390/cryst12111630
Chicago/Turabian StyleBorik, Mikhail, Artem Chislov, Alexej Kulebyakin, Elena Lomonova, Filipp Milovich, Valentina Myzina, Polina Ryabochkina, Nataliya Sidorova, and Nataliya Tabachkova. 2022. "Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals" Crystals 12, no. 11: 1630. https://doi.org/10.3390/cryst12111630
APA StyleBorik, M., Chislov, A., Kulebyakin, A., Lomonova, E., Milovich, F., Myzina, V., Ryabochkina, P., Sidorova, N., & Tabachkova, N. (2022). Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals. Crystals, 12(11), 1630. https://doi.org/10.3390/cryst12111630