Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film
Abstract
1. Introduction
2. Experimental Procedure
2.1. Experimental Materials
2.2. Preparation of Low Phosphorus Passivation Solution Material
2.3. Characterisation
3. Results and Discussion
3.1. Electrochemical Workstation
3.2. Micromorphology Analysis and Detection
3.3. X-ray Photoelectron Spectroscopy
3.4. Explore the Mechanism of Molybdate Passivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Hu, J.; Meng, H. A Review of Recent Developments in Coating Systems for Hot-Dip Galvanized Steel. Front. Mater. 2020, 7, 74. [Google Scholar] [CrossRef]
- Matsumoto, S.; Yamaga, S.; Yoshikawa, A. New surface passivation method for GaAs and its effect on the initial growth stage of a heteroepitaxial ZnSe layer. Appl. Surf. Sci. 1992, 60, 274–280. [Google Scholar] [CrossRef]
- Ming, J.; Shi, J.; Sun, W. Effects of Mill Scale and Steel Type on Passivation and Accelerated Corrosion Behavior of Reinforcing Steels in Concrete. J. Mater. Civ. Eng. 2020, 32, 4020029. [Google Scholar] [CrossRef]
- Zhao, Y. Interaction Mechanism between Zn and Passivated Stainless Steel. Int. J. Electrochem. Sci. 2019, 14, 301–314. [Google Scholar] [CrossRef]
- Park, J.H.; Bolan, N.S.; Chung, J.W.; Naidu, R.; Megharaj, M. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. J. Environ. Monit. 2011, 13, 2234–2242. [Google Scholar] [CrossRef]
- Derun, E.M.; Demirozu, T.; Piskin, M.B.; Piskin, S. The analysis of corrosion performance of car bodies coated by no nickel and low nickel zinc phosphating processes. Mater. Corros. 2005, 56, 412–416. [Google Scholar] [CrossRef]
- Cubillos, G.I.; Olaya, J.J.; Clavijo, D.; Alfonso, J.E.; Bethencourt, M. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by rf sputtering. Rev. Mex. De Fis. 2012, 58, 328–334. [Google Scholar]
- Santos, M.; Freire, C. Evaluation of corrosion resistance of steel coated with zinc-iron alloy electrodeposits containing BTSE, BTESPTS and rare earth salts as conversion films. Matéria 2013, 18, 1576–1586. [Google Scholar]
- Aramaki, K. Protection of zinc from corrosion by coverage with a hydrated cerium(III)oxide layer and ultrathin polymer films of a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes. Corros. Sci. 2007, 49, 1963–1980. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Liu, G.; Pang, J.; Zhu, Y. Corrosion Behavior of Cr Modified HRB400 Steel Rebar in 2%NaCl Solution. Corros. Sci. Prot. Technol. 2015, 27, 559–564. (In Chinese) [Google Scholar]
- Robin, A.; Silva, G.; Rosa, J.L. Corrosion Behavior of HA-316L SS Biocomposites in Aqueous Solutions. Mater. Res. 2013, 16, 1254–1259. [Google Scholar] [CrossRef]
- Castaneda, A.; Howland, J.J.; Corvo, F.; Perez, T. Corrosion of steel reinforced concrete in the tropical coastal atmosphere of Havana City, Cuba. Química Nova 2013, 36, 220–229. [Google Scholar] [CrossRef][Green Version]
- Abd el Haleem, S.M.; Ateya, B.G. Cyclic voltammetry of copper in sodium hydroxide solutions. J. Electroanal. Chem. 1981, 117, 309–319. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Yin, X.; Yang, W.; Chen, Y.; Liu, Y. Effect of the passive films on CaCO3 scale depositing on Q235 steel: Electrochemical and surface investigation. J. Colloid Interface Sci. 2022, 611, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, M.; Xie, D.; Zhong, L.; Zhang, X. A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide. Corros. Sci. 2017, 128, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Z.; Singh, P.M. Effects of Chloride Ions on Static and Stress Corrosion Behaviors of 9Cr Martensitic Steel. Surf. Technol. 2019, 48, 296–303. (In Chinese) [Google Scholar]
- Wallinder, D.; Pan, J.; Leygraf, C.; Delblanc-Bauer, A. Eis and XPS study of surface modification of 316LVM stainless steel after passivation. Corros. Sci. 1998, 41, 275–289. [Google Scholar] [CrossRef]
- Lu, J.; Kong, G.; Chen, J.; Xu, Q.; Sui, R. Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel. Trans. Nonferrous Met. Soc. China 2003, 13, 145–148. [Google Scholar]
- Wang, M.; Ma, R.; Du, A.; Hu, S.; Muhammad, M.; Cao, X.; Fan, Y.; Zhao, X.; Wu, J. Corrosion resistance of black phosphorus nanosheets composite phosphate coatings on Q235 steel. Mater. Chem. Phys. 2020, 250, 123056. [Google Scholar] [CrossRef]
- Al-Refaie, A.A.; Walton, J.; Cottis, R.A.; Lindsay, R. Photoelectron spectroscopy study of inhibition of mild steel corrosion by molybdate and nitrite anions. Corros. Sci. 2010, 52, 422. [Google Scholar] [CrossRef]
Chemical Element | C | Si | Mn | S | P | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
Element (%) | 0.12–0.20 | ≤0.3 | 0.30–0.70 | ≤0.045 | ≤0.045 | ≤0.30 | ≤0.30 | ≤0.30 | ≥99.97 |
Na2MoO4 | Na3PO4 | H3BO3 | H2O | |
---|---|---|---|---|
Content (g/L) | 2.5 | 1 | 3 mL/L | Constant volume to 1 L |
ZnO | C6H8O7 | H3PO4 | NaNO2 | H2O | |
---|---|---|---|---|---|
Content (g/L) | 15 | 1.5 | 50 mL/L | 10 mL/L | Constant volume to 1 L |
Sample Status | E Corr /V | I Corr × 10−4/mA |
---|---|---|
Unpassivated sample | −1.038 | 6.45 |
Conventional phosphating sample | −1.025 | 5.19 |
Low phosphorus passivated sample | −0.999 | 1.536 |
Rs (Ω cm2) | Rp (Ω cm2) | CPE (μF cm−2) | |
---|---|---|---|
Unpassivated sample | 2.175 | 417.6 | 585.44 |
Conventional phosphating sample | 2.506 | 659 | 475.53 |
Low phosphorus passivated sample | 2.398 | 701 | 407.33 |
Chemical Element | Mo3d | P2p | O1s |
---|---|---|---|
Elemental binding energy/eV | 232.3/235.77/235.87 | 133/133.79 | 531.2/533.2 |
Percentage composition/at% | 6.9 | 4.6 | 41.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Liu, Q.; Fan, Y. Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals 2022, 12, 1559. https://doi.org/10.3390/cryst12111559
Wan Y, Liu Q, Fan Y. Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals. 2022; 12(11):1559. https://doi.org/10.3390/cryst12111559
Chicago/Turabian StyleWan, Yi, Qiaoping Liu, and Yunying Fan. 2022. "Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film" Crystals 12, no. 11: 1559. https://doi.org/10.3390/cryst12111559
APA StyleWan, Y., Liu, Q., & Fan, Y. (2022). Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals, 12(11), 1559. https://doi.org/10.3390/cryst12111559