A TEM Study on a Polycrystalline Olivine Sample Deformed in a D-DIA under Mantle Conditions
Abstract
1. Introduction
2. Sample Description and Experimental Details
3. Results
3.1. Morphology of the Recrystallized Olivine Grains
3.2. Dislocation Microstructure and Slip System
4. Discussion and Conclusion
4.1. Evidence of High-Temperature Dislocation Creep
4.2. Activation of [001] Dislocations
4.3. Dissociated Dislocations in Deformed Olivine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mainprice, D.; Tommasi, A.; Couvy, H.; Cordier, P.; Frost, D. Pressure Sensitivity of Olivine Slip Systems and Seismic Anisotropy of Earth’s Upper Mantle. Nature 2005, 433, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.; Birkeland, T. Electron Microscope Study of Peridotite Xenoliths in Kimberlites. Contrib. Mineral. Petrol. 1973, 42, 147–157. [Google Scholar] [CrossRef]
- Toxopeus, J.B.; Boland, J. Several Types of Natural Deformation in Olivine, an Electron Microscope Study. Tectonophysics 1976, 32, 209–233. [Google Scholar] [CrossRef]
- Jin, Z.; Green, H.; Borch, R. Microstructures of Olivine and Stresses in the Upper Mantle Beneath Eastern China. Tectonophysics 1989, 169, 23–50. [Google Scholar] [CrossRef]
- Skrotzki, W.; Wedel, A.; Weber, K.; Muller, W. Microstructure and Texture in Lherzolites of the Balmuccia Massif and Their Significance Regarding the Thermomechanical History. Tectonophysics 1990, 179, 227–251. [Google Scholar] [CrossRef]
- Bai, Q.; Kohlstedt, D. High-temperature Creep of Olivine Single Crystals, 2. Dislocation Structures. Tectonophysics 1992, 206, 1–29. [Google Scholar] [CrossRef]
- Boland, J.N.; Toxopeus, J.M.A.B. Dislocation Deformation Mechanisms in Peridotite Xenoliths in Kimberlites. Contrib. Mineral. Petrol. 1977, 60, 17–30. [Google Scholar] [CrossRef]
- Matysiak, A.K.; Trepmann, C.A. Crystal-plastic Deformation and Recrystallization of Peridotite Controlled By the Seismic Cycle. Tectonophysics 2012, 530, 111–127. [Google Scholar] [CrossRef]
- Marquardt, K.; Faul, U.H. The Structure and Composition of Olivine Grain Boundaries: 40 Years of Studies, Status and Current Developments. Phys. Chem. Miner. 2018, 45, 139–172. [Google Scholar] [CrossRef]
- Ferreira, F.; Hansen, L.N.; Marquardt, K. The Effect of Grain Boundaries on Plastic Deformation of Olivine. J. Geophys. Res.-Solid Earth 2021, 126, e2020JB020273. [Google Scholar] [CrossRef]
- Wang, Y.; Rivers, M.; Sutton, S.; Eng, P.; Shen, G.; Getting, I. A Multi-anvil, High-pressure Facility for Synchrotron Radiation Research at Geosoilenvirocars at the Advanced Photon Source. Rev. High Press. Sci. Technol. 1998, 15, 1490–1495. [Google Scholar] [CrossRef]
- Wang, Y.; Durham, W.; Getting, I.; Weidner, D. The Deformation-dia: A New Apparatus for High Temperature Triaxial Deformation to Pressures Up to 15 Gpa. Rev. Sci. Instrum. 2003, 74, 3002–3011. [Google Scholar] [CrossRef]
- Bollinger, C.; Merkel, S.; Cordier, P.; Raterron, P. Deformation of Forsterite Polycrystals at Mantle Pressure: Comparison with Fe-bearing Olivine and the Effect of Iron on Its Plasticity. Phys. Earth Planet. Inter. 2015, 240, 95–104. [Google Scholar] [CrossRef]
- Kaboli, S.; Burnley, P.C.; Xia, G.; Green, I.H.W. Pressure Dependence of Creep in Forsterite Olivine: Comparison of Measurements From the D-dia and Griggs Apparatus. Geophys. Res. Lett. 2017, 44, 10–939. [Google Scholar] [CrossRef]
- Thieme, M.; Pozzi, G.; Demouchy, S.; De Paola, N.; Barou, F.; Koizumi, S.; Bowen, L. Shear Deformation of Nano- and Micro-crystalline Olivine at Seismic Slip Rates. Tectonophysics 2021, 802, 228736. [Google Scholar] [CrossRef]
- Bollinger, C.; Merkel, S.; Raterron, P. In Situ Quantitative Analysis of Stress and Texture Development in Forsterite Aggregates Deformed at 6 Gpa and 1373 K. J. Appl. Crystallogr. 2012, 45, 263–271. [Google Scholar] [CrossRef]
- Couvy, H.; Frost, D.; Heidelbach, F.; Nyilas, K.; Ungar, T.; Mackwell, S.; Cordier, P. Shear Deformation Experiments of Forsterite at 11gpa-1400 Degrees C in the Multianvil Apparatus. Eur. J. Mineral. 2004, 16, 877–889. [Google Scholar] [CrossRef]
- Durinck, J.; Legris, A.; Cordier, P. Pressure Sensitivity of Olivine Slip Systems: First-principle Calculations of Generalised Stacking Faults. Phys. Chem. Miner. 2005, 32, 646–654. [Google Scholar] [CrossRef]
- Raterron, P.; Chen, J.; Li, L.; Weidner, D.; Cordier, P. Pressure-induced Slip-system Transition in Forsterite: Single-crystal Rheological Properties at Mantle Pressure and Temperature. Am. Mineral. 2007, 92, 1436–1445. [Google Scholar] [CrossRef]
- Raterron, P.; Amiguet, E.; Chen, J.; Li, L.; Cordier, P. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Phys. Earth Planet. Inter. 2009, 172, 74–83. [Google Scholar] [CrossRef]
- Raterron, P.; Chen, J.; Geenen, T.; Girard, J. Pressure Effect on Forsterite Dislocation Slip Systems: Implications for Upper-mantle Lpo and Low Viscosity Zone. Phys. Earth Planet. Inter. 2011, 188, 26–36. [Google Scholar] [CrossRef]
- Ohuchi, T.; Kawazoe, T.; Nishihara, Y.; Nishiyama, N.; Irifune, T. High Pressure and Temperature Fabric Transitions in Olivine and Variations in Upper Mantle Seismic Anisotropy. Earth Planet. Sci. Lett. 2011, 304, 55–63. [Google Scholar] [CrossRef]
- Hilairet, N.; Wang, Y.; Sanehira, T.; Merkel, S.; Mei, S. Deformation of Olivine Under Mantle Conditions: An in Situ High-pressure, High-temperature Study Using Monochromatic Synchrotron Radiation. J. Geophys. Res.-Solid Earth 2012, 117, B01203. [Google Scholar] [CrossRef]
- Mussi, A.; Cordier, P.; Demouchy, S.; Vanmansart, C. Characterization of the Glide Planes of the [001] Screw Dislocations in Olivine Using Electron Tomography. Phys. Chem. Miner. 2014, 41, 537–545. [Google Scholar] [CrossRef]
- Mussi, A.; Cordier, P.; Demouchy, S.; Hue, B. Hardening Mechanisms in Olivine Single Crystal Deformed at 1090 Degrees C: An Electron Tomography Study. Philos. Mag. 2017, 97, 3172–3185. [Google Scholar] [CrossRef]
- Gerrits, R.; Wirth, R.; Schreiber, A.; Feldmann, I.; Knabe, N.; Schott, J.; Benning, L.G.; Gorbushina, A.A. High-resolution Imaging of Fungal Biofilm-induced Olivine Weathering. Chem. Geol. 2021, 559, 119902. [Google Scholar] [CrossRef]
- Nicolas, A.; Poirier, J.P. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks; John Wiley & Sons Press: London, UK; New York, NY, USA, 1976; p. 444. [Google Scholar]
- Hull, D.; Bacon, D.J. Introduction to Dislocations, 4th ed.; Oxford Press: Oxford, UK, 2001; p. 249. [Google Scholar]
- Wang, Y.; Liebermann, R.C.; Boland, J.N. Olivine as an in Situ Piezometer in High Pressure Apparatus. Phys. Chem. Miner. 1988, 15, 493–497. [Google Scholar] [CrossRef]
- Zha, C.; Duffy, T.; Downs, R.; Mao, H.; Hemley, R. Brillouin Scattering and X-ray Diffraction of San Carlos Olivine: Direct Pressure Determination to 32 Gpa. Earth Planet. Sci. Lett. 1998, 159, 25–33. [Google Scholar] [CrossRef]
- Liu, W.; Kung, J.; Li, B. Elasticity of San Carlos Olivine to 8 Gpa and 1073 K. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Green, H.; Radcliffe, S. Dislocation Mechanisms in Olivine and Flow in the Upper Mantle. Earth Planet. Sci. Lett. 1972, 15, 239–247. [Google Scholar] [CrossRef]
- Jin, Z.; Bai, Q.; Kohlstedt, D. High-temperature Creep of Olivine Crystals From Four Localities. Phys. Earth Planet. Inter. 1994, 82, 55–64. [Google Scholar] [CrossRef]
- Jung, H.; Karato, S. Water-induced Fabric Transitions in Olivine. Science 2001, 293, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Katayama, I.; Jiang, Z.; Hiraga, T.; Karato, S. Effect of Water and Stress on the Lattice-preferred Orientation of Olivine. Tectonophysics 2006, 421, 1–22. [Google Scholar] [CrossRef]
- Jung, H.; Mo, W.; Green, H.W. Upper Mantle Seismic Anisotropy Resulting From Pressure-induced Slip Transition in Olivine. Nat. Geosci. 2009, 2, 73–77. [Google Scholar] [CrossRef]
- Raterron, P.; Girard, J.; Chen, J. Activities of Olivine Slip Systems in the Upper Mantle. Phys. Earth Planet. Inter. 2012, 200, 105–112. [Google Scholar] [CrossRef]
- Sande, J.B.V.; Kohlstedt, D.L. Observation of Dissociated Dislocations in Deformed Olivine. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1976, 34, 653–658. [Google Scholar] [CrossRef]
- Drury, M. hydration-induced Climb Dissociation of Dislocations in Naturally Deformed Mantle Olivine. Phys. Chem. Miner. 1991, 18, 106–116. [Google Scholar] [CrossRef]
- Durinck, J.; Carrez, P.; Cordier, P. Application of the Peierls-nabarro Model to Dislocations in Forsterite. Eur. J. Mineral. 2007, 19, 631–639. [Google Scholar] [CrossRef]
- Adjaoud, O.; Marquardt, K.; Jahn, S. Atomic Structures and Energies of Grain Boundaries in Mg2SiO4 Forsterite from Atomistic Modeling. Phys. Chem. Miner. 2012, 39, 749–760. [Google Scholar] [CrossRef]
- Kitamura, M.; Kondoh, S.; Morimoto, N.; Miller, G.; Rossman, G.; Putnis, A. Planar OH-bearing Defects in Mantle Olivine. Nature 1987, 328, 143–145. [Google Scholar] [CrossRef]
- Poirier, J.; Vergobbi, B. Splitting of Dislocations in Olivine, Cross-slip-controlled Creep and Mantle Rheology. Phys. Earth Planet. Inter. 1978, 16, 370–378. [Google Scholar] [CrossRef]
- Cai, W.; Bulatov, V.V.; Chang, J.; Li, J.; Yip, S. Dislocations in Solids. In Dislocation Core Effects on Mobility; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–80. [Google Scholar]
Deformation Segment | P(GPa) | T(K) | Strain Rate (10−5 s−1) | Stress (MPa) | Maximum Strain (%) |
---|---|---|---|---|---|
Seg 1 | 2.81 | 1576/1458 | 1.35 | 543 | −12 |
Seg 2 | 2.96 | 1643/1604 | 1.22 | 445 | −11 |
Seg 3 | 5.09 | 1671/1626 | 0.98 | 897 | −12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Hilairet, N.; Wang, Y. A TEM Study on a Polycrystalline Olivine Sample Deformed in a D-DIA under Mantle Conditions. Crystals 2022, 12, 1396. https://doi.org/10.3390/cryst12101396
Chen T, Hilairet N, Wang Y. A TEM Study on a Polycrystalline Olivine Sample Deformed in a D-DIA under Mantle Conditions. Crystals. 2022; 12(10):1396. https://doi.org/10.3390/cryst12101396
Chicago/Turabian StyleChen, Tao, Nadege Hilairet, and Yanbin Wang. 2022. "A TEM Study on a Polycrystalline Olivine Sample Deformed in a D-DIA under Mantle Conditions" Crystals 12, no. 10: 1396. https://doi.org/10.3390/cryst12101396
APA StyleChen, T., Hilairet, N., & Wang, Y. (2022). A TEM Study on a Polycrystalline Olivine Sample Deformed in a D-DIA under Mantle Conditions. Crystals, 12(10), 1396. https://doi.org/10.3390/cryst12101396