Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, G.-C. (Ed.) Semiconductor Nanostructures for Optoelectronic Devices; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nguyen, H.P.T.; Arafin, S.; Piao, J.; Cuong, T.V. Nanostructured Optoelectronics: Materials and Devices. J. Nanomater. 2016, 2016, 2051908. [Google Scholar] [CrossRef]
- Prakash, T. Review on nanostructured semiconductors for dye sensitized solar cells. Electron. Mater. Lett. 2012, 8, 231–243. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, W.; Feng, C.; Yang, Z.; Yang, Y. Replacement/Etching Route to ZnSe Nanotube Arrays and Their Enhanced Photocatalytic Activities. Ind. Eng. Chem. Res. 2012, 51, 4208–4214. [Google Scholar] [CrossRef]
- Cao, F.; Shi, W.; Zhao, L.; Song, S.; Yang, J.; Lei, Y.; Zhang, H. Hydrothermal Synthesis and High Photocatalytic Activity of 3D Wurtzite ZnSe Hierarchical Nanostructures. J. Phys. Chem. C 2008, 112, 17095–17101. [Google Scholar] [CrossRef]
- Feng, B.; Cao, J.; Han, D.; Liang, H.; Yang, S.; Li, X.; Yang, J. ZnSe nanoparticles of different sizes: Optical and photocatalytic properties. Mater. Sci. Semiconduct. Process. 2014, 27, 865–872. [Google Scholar] [CrossRef]
- Yin, J.; Yang, C.; Yang, X.; Wang, S.; Zhang, H.; Zhou, S.; Feng, G. Fabrication and Photocatalytic Properties of ZnSe Nanorod Films. J. Nanomater. 2016, 2016, 1738608. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Xiao, Y.; Zhang, S. The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology 2011, 22, 015604. [Google Scholar] [CrossRef]
- Feng, B.; Cao, J.; Han, D.; Yang, S.; Yang, J. Study on growth mechanism and optical properties of ZnSe nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 3206–3214. [Google Scholar] [CrossRef]
- Feng, B.; Yang, J.; Cao, J.; Yang, L.; Gao, M.; Wei, M.; Liu, Y.; Song, H. Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases. Mater. Res. Bull. 2013, 48, 1040–1044. [Google Scholar] [CrossRef]
- Yao, T.; Zhao, Q.; Qiao, Z.; Peng, F.; Wang, H.; Yu, H.; Chi, C.; Yang, J. Chemical Synthesis, Structural Characterization, Optical Properties, and Photocatalytic Activity of Ultrathin ZnSe Nanorods. Chem. A Eur. J. 2011, 17, 8663–8670. [Google Scholar] [CrossRef]
- Das, P.; Pan, A.; Chakraborty, K.; Pal, T.; Ghosh, S. RGO-ZnSe Photocatalyst towards Solar-Light-Assisted Degradation of Tetracycline Antibiotic Water Pollutant. ChemistrySelect 2018, 3, 10214–10219. [Google Scholar] [CrossRef]
- Sun, C.; Li, T.; Wen, W.; Luo, X.; Zhao, L. ZnSe/CdSe core–shell nanoribbon arrays for photocatalytic applications. CrystEngComm 2020, 22, 895–904. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, N.; Zhang, M.Y.; Zhang, X.T.; Gao, H.; Wen, J. Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm 2014, 16, 1201–1206. [Google Scholar] [CrossRef]
- Sitara, E.; Ehsan, M.F.; Nasir, H.; Iram, S.; Bukhari, S.A.B. Synthesis, Characterization and Photocatalytic Activity of MoS2/ZnSe Heterostructures for the Degradation of Levofloxacin. Catalysts 2020, 10, 1380. [Google Scholar] [CrossRef]
- Chi, T.T.K.; Hien, B.T.T.; Nam, M.H.; Hai, P.N. Structural and Optical Properties of ZnSe Nanoparticles. J. Nanosci. Nanotechnol. 2021, 21, 2582–2587. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Ma, Y.; Zhai, T. ZnSe nanostructures: Synthesis, properties and applications. Prog. Mater. Sci. 2016, 83, 472–535. [Google Scholar] [CrossRef]
- Miah, M.A.H.; Begum, J.; Uddin, M.J.; Momin, M.A.; Bhuiyan, M.R.A. Influence of Thickness on the Structural and Optical Properties of ZnSe Thin Films. J. Appl. Sci. Technol. 2010, 7, 27–32. [Google Scholar]
- Reiss, P. ZnSe based colloidal nanocrystals: Synthesis, shape control, core/shell, alloy and doped systems. New J. Chem. 2007, 31, 1843–1852. [Google Scholar] [CrossRef]
- Yang, L.; Xie, R.; Liu, L.; Xiao, D.; Zhu, J. Synthesis and Characterization of ZnSe Nanocrystals by W/O Reverse Microemulsion Method: The Effect of Cosurfactant. J. Phys. Chem. C 2011, 115, 19507–19512. [Google Scholar] [CrossRef]
- Peng, L.L.; Wang, Y.H.; Li, C.Y. Ultraviolet-Blue Photoluminescence of ZnSe Quantum Dots. J Nanosci. Nanotechnol. 2010, 10, 2113–2118. [Google Scholar] [CrossRef]
- Lu, G.; An, H.; Chen, Y.; Huang, J.; Zhang, H.; Xiang, B.; Zhao, Q.; Yu, D.; Du, W. Temperature dependence of Raman scattering of ZnSe nanoparticle grown through vapor phase. J. Cryst. Growth 2005, 274, 530–535. [Google Scholar] [CrossRef]
- Shi, L.; Wang, C.; Wang, J.; Fang, Z.; Xing, H. Temperature-Dependent Raman Scattering of ZnSe Nanowires. Adv. Mater. Phys. Chem. 2016, 6, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Hui-Zhi, A.; Qing, Z.; Wei-Min, D. Raman spectra of ZnSe nanoparticles synthesized by thermal evaporation method. Chin. Phys. 2004, 13, 1753–1757. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, X.; Yin, P.; Gao, F. Size-Dependent Raman Shifts for nanocrystals. Sci. Rep. 2016, 6, 20539. [Google Scholar] [CrossRef]
- Phan, T.-L.; Yu, S.C. Optical and Magnetic Properties of Zn1–x MnxO Nanorods Grown by Chemical Vapor Deposition. J. Phys. Chem. C 2013, 117, 6443–6453. [Google Scholar] [CrossRef]
- Yugami, H.; Nakashima, S.; Sakai, K.; Kojima, H.; Hangyo, M.; Mitsuishi, A. Raman Scattering from Plasmon-LO-Phonon Coupled Modes in n-ZnSe. J. Phys. Soc. Jpn. 1987, 561, 881–1889. [Google Scholar] [CrossRef]
- Xu, J.; Lu, A.; Wang, C.; Zou, R.; Liu, X.; Wu, X.; Wang, Y.; Li, S.; Sun, L.; Chen, X.; et al. ZnSe-Based Longitudinal Twinning Nanowires. Adv. Eng. Mater. 2014, 16, 459–465. [Google Scholar] [CrossRef]
- Shi, L.; Xu, Y.; Li, Q. Controlled Fabrication of ZnSe Arrays of Well-Aligned Nanorods, Nanowires, and Nanobelts with a Facile Template-Free Route. J. Phys. Chem. C 2009, 113, 1795–1799. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Huo, X.; Yao, X. Preparation and optical properties of dispersible ZnSe nanocrystals synthesized by high energy ball milling. Ceram. Int. 2008, 34, 1077–1080. [Google Scholar] [CrossRef]
- Baltramiejūnas, R.; Ryzhikov, V.D.; Račiukaitis, G.; Gavryushin, V.; Juodžbalis, D.; Kazlauskas, A. Centers of radiative and nonradiative recombination in isoelectronically doped ZnSe: Te crystals. Phys. B Condens. Matter. 1993, 185, 245–249. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A.; Dimitropoulos, M.; Govatsi, A.; Sygellou, L.; Tsakiroglou, C.D.; Yannopoulos, S.N. Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on theirUV-mediated photocatalytic activity. Appl. Catal. B Environ. 2017, 205, 292–301. [Google Scholar] [CrossRef]
- Dirany, N.; Hallaoui, A.; Valmalette, J.C.; Arab, M. Effect of morphology and temperature treatment control on the photocatalytic and photoluminescence properties of SrWO4 crystals. Photochem. Photobiol. Sci. 2020, 19, 235–250. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Sui, Y.; Liub, Q.; Jianga, T.; Guoa, Y. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings. Appl. Sci. 2018, 428, 1149–1158. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H.; Peng, Y.; Li, P.; Chen, S.; Yang, B.; Zhang, J. Photocatalytic Performance and Degradation Pathway of Rhodamine B with TS-1/C3N4 Composite under Visible Light. Nanomaterials 2020, 10, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Abass, N.; Qahtan, T.F.; Gondal, M.A.; Moqbel, R.A.; Bubshait, A. Laser-assisted synthesis of ZnO/ZnSe hybrid nanostructured films for enhanced solar-light induced water splitting and water decontamination. Int. J. Hydrogen Energy 2020, 45, 22938–22949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hien, B.T.T.; Mai, V.T.; Thuy, P.T.; Hoa, V.X.; Chi, T.T.K. Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time. Crystals 2021, 11, 1125. https://doi.org/10.3390/cryst11091125
Hien BTT, Mai VT, Thuy PT, Hoa VX, Chi TTK. Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time. Crystals. 2021; 11(9):1125. https://doi.org/10.3390/cryst11091125
Chicago/Turabian StyleHien, Bui Thi Thu, Vu Thanh Mai, Pham Thi Thuy, Vu Xuan Hoa, and Tran Thi Kim Chi. 2021. "Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time" Crystals 11, no. 9: 1125. https://doi.org/10.3390/cryst11091125
APA StyleHien, B. T. T., Mai, V. T., Thuy, P. T., Hoa, V. X., & Chi, T. T. K. (2021). Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time. Crystals, 11(9), 1125. https://doi.org/10.3390/cryst11091125