Theoretical Investigation of the EPR G-Factor for the Axial Symmetry Ce3+ Center in the BaWO4 Single Crystal
Abstract
:1. Introduction
2. Calculations
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alencar, L.; Mesquita, A.; Feitosa, C.A.; Balzer, R.; Probst, L.F.; Batalha, D.C.; Rosmaninho, M.G.; Fajardo, H.V.; Bernardi, M.I. Preparation, characterization and catalytic application of Barium molybdate (BaMoO4) and Barium tungstate (BaWO4) in the gas-phase oxidation of toluene. Ceram. Int. 2017, 43, 4462–4469. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Sousa, R.; Matos, J.; Moura, J.; Freire, P.; Pinheiro, G.; Luz-Lima, C. Low-temperature induced phase transitions in BaWO4:Er3+ microcrystals: A Raman scattering study. J. Mol. Struct. 2020, 1204, 127498. [Google Scholar] [CrossRef]
- Tyagi, M.; Sangeeta, M.; Sabharwal, S. Luminescence properties of BaWO4 single crystal. J. Lumin. 2008, 128, 1528–1532. [Google Scholar] [CrossRef]
- Basiev, T.T.; Osiko, V.; Prokhorov, A.M.; Dianov, E.M. Solid-State Mid-Infrared Laser Sources; Springer Science & Business Media: Berlin, Germany, 2003; Volume 89, pp. 359–408. [Google Scholar]
- Wang, L.; Cui, X.; Wesch, W.; Wendler, E. He beam annealing and self-healing of Kr implanted BaWO4 at low temperature. J. Appl. Phys. 2021, 129, 165102. [Google Scholar] [CrossRef]
- Dabre, K.; Dhoble, S.; Lochab, J. Synthesis and luminescence properties of Ce3+ doped MWO4 (M = Ca, Sr and Ba) microcrystalline phosphors. J. Lumin. 2014, 149, 348–352. [Google Scholar] [CrossRef]
- Cerný, P.; Jelínková, H.; Basiev, T.T.; Zverev, P.G. Highly efficient picosecond Raman generators based on the BaWO/sub 4/ crystal in the near infrared, visible, and ultraviolet. IEEE J. Quantum Electron. 2002, 38, 1471–1478. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H. Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi B 2010, 247, 1583. [Google Scholar] [CrossRef] [Green Version]
- Basiev, T.T.; Danileiko, Y.K.; Doroshenko, M.E.; Fedin, A.V.; Gavrilov, A.V.; Osiko, V.V.; Smetanin, S.N. High-energy BaWO4 Raman laser pumped by a self-phase-conjugated Nd:GGG laser. SPIE Proc. 2004, 5481, 23–27. [Google Scholar] [CrossRef]
- Wlodarczyk, D.; Bulyk, L.-I.; Berkowski, M.; Głowacki, M.; Kosyl, K.M.; Kaczmarek, S.M.; Kowalski, Z.; Wittlin, A.; Przybylinska, H.; Zhydachevskyy, Y.; et al. High-Pressure Low-Temperature Optical Studies of BaWO4:Ce,Na Crystals. Inorg. Chem. 2019, 58, 5617–5629. [Google Scholar] [CrossRef]
- Yin, Y.; Gan, Z.; Sun, Y.; Zhou, B.; Zhang, X.; Zhang, D.; Gao, P. Controlled synthesis and photoluminescence properties of BaXO4 (X = W, Mo) hierarchical nanostructures via a facile solution route. Mater. Lett. 2010, 64, 789–792. [Google Scholar] [CrossRef]
- Du, S.; Shi, Y.; Zhang, D.; Li, Q.; Feng, B.; Zhang, J.-Y.; Zang, J.-C. High-peak power multi-wavelength picosecond pulses generated from a BaWO4 Raman-seeded optical parametric amplifier. Opt. Commun. 2009, 282, 2960–2963. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Q.P.; Zhang, X.Y.; Liu, Z.J.; Bai, F.; Chen, X.H.; Shen, H.B.; Lan, W.X. High-power Nd:YVO4/BaWO4 intracavity Raman laser emitting at 1103 nm. Appl. Phys. A 2012, 109, 9–13. [Google Scholar] [CrossRef]
- Vidya, S.; Solomon, S.; Thomas, J.K. Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications. Adv. Condens. Matter Phys. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sleight, A.W. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Cryst. 1972, B28, 2899. [Google Scholar] [CrossRef]
- Chauhan, A. Czochralski growth and radiation hardness of BaWO4 Crystals. J. Cryst. Growth 2003, 254, 418–422. [Google Scholar] [CrossRef]
- Kaczmarek, S.M.; Leniec, G.; Bodziony, T.; Fuks, H.; Kowalski, Z.; Drozdowski, W.; Berkowski, M.; Głowacki, M.; Witkowski, M.E.; Makowski, M. BaWO4:Ce Single Crystals Codoped with Na Ions. Crystals 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Leniec, G.; Kaczmarek, S.M.; Bodziony, T.; Fuks, H.; Kowalski, Z.; Berkowski, M.; Głowacki, M. Site Symmetries of Cerium Ions in BaWO4 Single Crystals Codoped with Sodium Ions. Appl. Magn. Reson. 2018, 50, 819–833. [Google Scholar] [CrossRef]
- Kaczmarek, S.; Witkowski, M.E.; Głowacki, M.; Leniec, G.; Berkowski, M.; Kowalski, Z.; Makowski, M.; Drozdowski, W. BaWO4: Pr single crystals co-doped with Na. J. Cryst. Growth 2019, 528, 125264. [Google Scholar] [CrossRef]
- Bodziony, T.; Kaczmarek, S.M. Structural Analysis of the BaWO4 Crystal Doped with Ce and Codoped with Na Ions Based on g-shift Parameters. Crystals 2020, 10, 789. [Google Scholar] [CrossRef]
- Newman, D.J. On the g-shift of S-state ions. J. Phys. C Solid State Phys. 1977, 10, L315–L318. [Google Scholar] [CrossRef]
- Newman, D.J.; Ng, B. Crystal Field Handbook; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Newman, D.; Urban, W. Interpretation of S-state ion E.P.R. spectra. Adv. Phys. 1975, 24, 793–844. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Zheng, W.W. EPR parameters and defect structures for two trigonal Er3+ centers in LiNbO3 and MgO or ZnO codoped LiNbO3 crystals. Phys. Rev. B 2002, 65, 224107. [Google Scholar]
- Wu, S.-Y.; Dong, H.-N. Theoretical investigations of the EPR g factors and the local structure for Er3+ in BaWO4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1991–1994. [Google Scholar] [CrossRef]
- Liu, H.G.; Zheng, W.C.; Feng, W.L. Investigations of the optical spectra and EPR g-factors for the tetragonal Ce3+ centers in YPO4 and LuPO4 crystals. Philos. Mag. Lett. 2009, 89, 306–311. [Google Scholar] [CrossRef]
- Liu, H.-G.; Mei, Y.; Zheng, W.-C. Link between EPR g-factors and local structure of the orthorhombic Ce3+ center in Y3Al5O12 and Lu3Al5O12 garnets. Chem. Phys. Lett. 2012, 554, 214–218. [Google Scholar] [CrossRef]
- Liu, H.-G.; Paweł, G.; Czeslaw, R. Crystal field parameters for Yb3+ ions at orthorhombic centers in garnets—Revisited. J. Lumin. 2011, 131, 2690–2696. [Google Scholar] [CrossRef]
- Liu, H.G.; Zheng, W.C.; Feng, W.L. Spin-Hamiltonian parameters of Yb3+ions in trigonally-distorted octahedral sites of Na3Sc2V3O12 garnet. Philos. Mag. 2008, 88, 3075–3080. [Google Scholar] [CrossRef]
- Liu, H.G.; Zheng, W.C. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF3 crystal. Phys. B 2016, 496, 15–19. [Google Scholar] [CrossRef]
- Wen, J.; Ning, L.; Huang, Y.; Zhan, S.; Zhang, J.; Duan, C.-K.; Yin, M. Crystal field interactions between Ce3+ ion and fluoride ligands: A theoretical investigation. Mater. Res. Express 2015, 2, 086202. [Google Scholar] [CrossRef]
- Dong, H.-N.; Wu, S.-Y. Investigation of the spin Hamiltonian parameters of Yb3+ in CaWO4 crystal. Naturforschung 2004, 59, 943–946. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Dong, H.-N.; Yan, W.-Z.; Gao, X.-Y. Theoretical studies of the spin-Hamiltonian parameters for Er3+ in CaWO4 and SrWO4. Phys. Status Solidi (b) 2004, 241, 1073–1077. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Zheng, W.C. Investigations of the g factors and hyperfine structure parameters for Er3+ ion in zircon-type compounds. Spectrochim. Acta Part A 2002, 58, 3179–3183. [Google Scholar]
- Wu, S.-Y.; Dong, H.-N.; Wei, W.-H. Investigations on the local structures and the EPR parameters for Er3+ in PbMoO4 and SrMoO4. J. Alloy Compd. 2004, 375, 39–43. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Dong, H.-N.; Wei, W.-H. Investigations of the spin-Hamiltonian parameters for Er3+ at the Th4+ site in ThGeO4. Spectrochim. Acta Part A 2005, 61, 2886–2890. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-G.; Rudowicz, C.; Gnutek, P. Determination of the g-factors measured by EPR based on theoretical crystal field and superposition model analyses for lanthanide-based magnetically concentrated crystals—case study: Double tungstates and molybdates. Philos. Mag. 2018, 99, 224–246. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Zhang, Q.; Wang, X.; Yin, J.; Song, M.; Guo, X. First-principles study on electronic structures of BaWO4 crystals containing F-type color centers. J. Phys. Chem. Solids 2008, 69, 1815–1819. [Google Scholar] [CrossRef]
- Lin, X.S.; Chen, J.L.; Zhuang, N.F.; Zhao, B.; Chen, J.Z. Growth and characterization of Yb:BaWO4 single crystal. J. Cryst. Growth 2005, 277, 223–227. [Google Scholar] [CrossRef]
- Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R. Crystal-field and superposition model analysis of: BaY F (= Er, Dy, Nd). Eur. Phys. J. B 2002, 29, 79–84. [Google Scholar] [CrossRef]
- Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R. Superposition-model analysis of rare-earth doped BaY 2 F 8. Radiat. Eff. Defects Solids 2002, 157, 921–926. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. J. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Vishwamittar; Puri, S.P. Investigation of the crystal field in rare-earth doped scheelites. J. Chem. Phys. 1974, 61, 3720. [Google Scholar] [CrossRef]
- Ramanantoanina, H.; Urland, W.; García-Fuente, A.; Cimpoesu, F.; Daul, C. Calculation of the 4f1→4f05d1 transitions in Ce3+-doped systems by Ligand Field Density Functional Theory. Chem. Phys. Lett. 2013, 588, 260–266. [Google Scholar] [CrossRef]
- Wen, J.; Ning, L.; Duan, C.-K.; Chen, Y.; Zhang, Y.; Yin, M. A Theoretical Study on the Structural and Energy Spectral Properties of Ce3+ Ions Doped in Various Fluoride Compounds. J. Phys. Chem. C 2012, 116, 20513–20521. [Google Scholar] [CrossRef]
i = 1 | 0.2608 | 0.2778 | 69.05 | −35.16 |
i = 2 | 0.2568 | 0.2738 | 143.00 | −24.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodziony, T.; Kaczmarek, S.M. Theoretical Investigation of the EPR G-Factor for the Axial Symmetry Ce3+ Center in the BaWO4 Single Crystal. Crystals 2021, 11, 804. https://doi.org/10.3390/cryst11070804
Bodziony T, Kaczmarek SM. Theoretical Investigation of the EPR G-Factor for the Axial Symmetry Ce3+ Center in the BaWO4 Single Crystal. Crystals. 2021; 11(7):804. https://doi.org/10.3390/cryst11070804
Chicago/Turabian StyleBodziony, Tomasz, and Sławomir Maksymilian Kaczmarek. 2021. "Theoretical Investigation of the EPR G-Factor for the Axial Symmetry Ce3+ Center in the BaWO4 Single Crystal" Crystals 11, no. 7: 804. https://doi.org/10.3390/cryst11070804
APA StyleBodziony, T., & Kaczmarek, S. M. (2021). Theoretical Investigation of the EPR G-Factor for the Axial Symmetry Ce3+ Center in the BaWO4 Single Crystal. Crystals, 11(7), 804. https://doi.org/10.3390/cryst11070804