#
Laser-Assisted Floating Zone Growth of BaFe_{2}S_{3} Large-Sized Ferromagnetic-Impurity-Free Single Crystals

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O
_{1-x}F_{x}]FeAs (x = 0.05–0.12) with T_{c}= 26 K. J. Am. Chem. Soc.**2008**, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed] - Fernandes, R.; Chubukov, A.; Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys.
**2014**, 10, 97–104. [Google Scholar] [CrossRef][Green Version] - Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C Supercond. Appl.
**2015**, 514, 399–422. [Google Scholar] [CrossRef][Green Version] - Hao, N.; Hu, J. Topological quantum states of matter in iron-based superconductors: from concept to material realization. Natl. Sci. Rev.
**2019**, 6, 213–226. [Google Scholar] [CrossRef] - Aswathy, P.; Anooja, J.; Sarun, P.; Syamaprasad, U. An overview on iron based superconductors. Supercond. Sci. Technol.
**2010**, 23, 073001. [Google Scholar] [CrossRef] - Takahashi, H.; Sugimoto, A.; Nambu, Y.; Yamauchi, T.; Hirata, Y.; Kawakami, T.; Avdeev, M.; Matsubayashi, K.; Du, F.; Kawashima, C.; et al. Pressure-induced superconductivity in the iron-based ladder material BaFe
_{2}S_{3}. Nat. Mater.**2015**, 14, 1008. [Google Scholar] [CrossRef][Green Version] - Yamauchi, T.; Hirata, Y.; Ueda, Y.; Ohgushi, K. Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe
_{2}S_{3}. Phys. Rev. Lett.**2015**, 115, 246402. [Google Scholar] [CrossRef] - Ying, J.; Lei, H.; Petrovic, C.; Xiao, Y.; Struzhkin, V.V. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe
_{2}Se_{3}. Phys. Rev. B**2017**, 95, 241109. [Google Scholar] [CrossRef][Green Version] - Svitlyk, V.; Garbarino, G.; Rosa, A.; Pomjakushina, E.; Krzton-Maziopa, A.; Conder, K.; Nunez-Regueiro, M.; Mezouar, M. High-pressure polymorphism of BaFe
_{2}Se_{3}. J. Phys. Condens. Matter**2019**, 31, 085401. [Google Scholar] [CrossRef][Green Version] - Craco, L.; Leoni, S. Microscopic description of localization-delocalization transitions in BaFe
_{2}S_{3}. Phys. Rev. B**2018**, 98, 195107. [Google Scholar] [CrossRef][Green Version] - Roh, S.; Shin, S.; Jang, J.; Lee, S.; Lee, M.; Seo, Y.S.; Li, W.; Biesner, T.; Dressel, M.; Rhee, J.Y.; et al. Magnetic-order-driven metal-insulator transitions in the quasi-one-dimensional spin-ladder compounds BaFe
_{2}S_{3}and BaFe_{2}Se_{3}. Phys. Rev. B**2020**, 101, 115118. [Google Scholar] [CrossRef] - Pizarro, J.M.; Bascones, E. Strong electronic correlations and Fermi surface reconstruction in the quasi-one-dimensional iron superconductor BaFe
_{2}S_{3}. Phys. Rev. Mater.**2019**, 3, 014801. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Lin, L.; Zhang, J.J.; Dagotto, E.; Dong, S. Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders AFe
_{2}X_{3}(A = Ba, K; X = S,Se). Phys. Rev. B**2017**, 95, 115154. [Google Scholar] [CrossRef][Green Version] - Materne, P.; Bi, W.; Zhao, J.; Hu, M.Y.; Amigó, M.L.; Seiro, S.; Aswartham, S.; Büchner, B.; Alp, E.E. Bandwidth controlled insulator-metal transition in BaFe
_{2}S_{3}: A Mössbauer study under pressure. Phys. Rev. B**2019**, 99, 020505. [Google Scholar] [CrossRef][Green Version] - Amigó, M.L.; Stahl, Q.; Maljuk, A.; Wolter, A.U.B.; Hess, C.; Geck, J.; Wurmehl, S.; Seiro, S.; Büchner, B. The role of the nominal iron content in the structural, compositional and physical properties of BaFe
_{2+δ}S_{3}. arXiv**2021**, arXiv:2101.07823. [Google Scholar] - Hirata, Y.; Maki, S.; Yamaura, J.i.; Yamauchi, T.; Ohgushi, K. Effects of stoichiometry and substitution in quasi-one-dimensional iron chalcogenide BaFe
_{2}S_{3}. Phys. Rev. B**2015**, 92, 205109. [Google Scholar] [CrossRef][Green Version] - Sun, H.; Li, X.; Zhou, Y.; Yu, J.; Frandsen, B.A.; Wu, S.; Xu, Z.; Jiang, S.; Huang, Q.; Bourret-Courchesne, E.; et al. Nonsuperconducting electronic ground state in pressurized BaFe
_{2}S_{3}and BaFe_{2}S_{2.5}Se_{0.5}. Phys. Rev. B**2020**, 101, 205129. [Google Scholar] [CrossRef] - Zhang, X.; Zhang, H.; Ma, Y.; Wang, L.; Chu, J.; Hu, T.; Mu, G.; Lu, Y.; Cai, C.; Huang, F.; et al. In situ annealing effects on magnetic properties and variable-range hopping of iron-based ladder material BaFe
_{2}S_{3}. Sci. China Phys. Mech. Astron.**2018**, 61, 77421. [Google Scholar] [CrossRef] - Telang, P.; Maljuk, A.; Rout, D.; Hu, R.; Skoulatos, M.; Karmakar, K.; Seiro, S.; Roessli, B.; Stuhr, U.; Büchner, B.; et al. Laser-diode-heated floating-zone crystal growth of ErVO
_{3}. J. Cryst. Growth**2019**, 507, 406–412. [Google Scholar] [CrossRef] - Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter
**1993**, 192, 55–69. [Google Scholar] [CrossRef] - Bruker, APEX3 v2018.1-0; Bruker AXS Inc.: Madison, WI, USA, 2017.
- SAINT(V8.30A); Bruker AXS Inc.: Madison, WI, USA, 2017.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr.
**2015**, 48, 3–10. [Google Scholar] [CrossRef][Green Version] - Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr.
**2008**, 64, 112–122. [Google Scholar] [CrossRef] [PubMed][Green Version] - Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr.
**1999**, 32, 837–838. [Google Scholar] [CrossRef] - Seiro, S.; Deppe, M.; Jeevan, H.; Burkhardt, U.; Geibel, C. Flux crystal growth of CeCu
_{2}Si_{2}: Revealing the effect of composition. Phys. Status Solidi**2010**, 247, 614–616. [Google Scholar] [CrossRef] - Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hong, H.; Steinfink, H. The crystal chemistry of phases in the Ba-Fe-S and Se systems. J. Solid State Chem.
**1972**, 5, 93–104. [Google Scholar] [CrossRef] - Iglesias, J.; Steinfink, H. Triangular prismatic coordination in ternary chalcogenides. Z. Für Krist.-Cryst. Mater.
**1975**, 142, 398–408. [Google Scholar] [CrossRef] - Swinnea, J.S.; Eisman, G.; Perng, T.; Kimizuka, N.; Steinfink, H. The crystal structure of “Ba
_{2}Fe_{4}S_{5}”: A two-dimensional array of FeS_{4}tetrahedra. J. Solid State Chem.**1982**, 41, 104–108. [Google Scholar] [CrossRef] - Du, F.; Ueda, Y.; Ohgushi, K. Large Magnon Contributions to Thermal Conductance in Quasi-One-Dimensional Fe-Based Ladder Compounds BaFe
_{2}(S_{1-x}Se_{x})_{3}. Phys. Rev. Lett.**2019**, 123, 086601. [Google Scholar] [CrossRef] - Johnston, D. Antiferromagnetic exchange in two-leg spin-1/2 ladders. Phys. Rev. B
**1996**, 54, 13009. [Google Scholar] [CrossRef] [PubMed] - Tiwary, S.K.; Vasudevan, S. Single crystal magnetic susceptibility of the quasi-one-dimensional antiferromagnet KFeS
_{2}. Solid State Commun.**1997**, 101, 449–452. [Google Scholar] [CrossRef] - Bates, L.F. Modern Magnetism; Cambrige at University Press: Cambrige, UK, 1948. [Google Scholar]
- Fogler, M.M.; Teber, S.; Shklovskii, B.I. Variable-range hopping in quasi-one-dimensional electron crystals. Phys. Rev. B
**2004**, 69, 035413. [Google Scholar] [CrossRef][Green Version]

**Figure 3.**(

**a**) As-grown ingot of BaFe${}_{2}$S${}_{3}$. The scale is in cm. The dotted lines indicate the cuts corresponding to (

**b**) the longitudinal section of the seeding and (

**c**) the cross-section of the end portion. The images in (

**b**,

**c**) were obtained using polarized light.

**Figure 5.**(

**a**) Powder X-ray diffraction patterns and Rietveld refinements for precursor and LFZ samples. The data are shifted vertically for clarity. (

**b**) Rocking curve of an LFZ-grown crystal for the (711) reflection. (

**c**) Laue pattern for an LFZ-grown single crystal. The c direction (horizontal in the image) is ∼10° away from the growth direction.

**Figure 6.**(

**a**) Temperature dependence of the magnetization divided by the magnetic field for precursor and LFZ crystals measured with an applied magnetic field of ${\mu}_{0}H$ = 5 T parallel to the c-axis. The dots show the slope of $M\left(H\right)$ for ${\mu}_{0}H$ ≥ 3 T, the color and symbol indicate the sample as defined in (

**b**). ${T}_{N}$ indicates the Néel temperature defined as the minimum in the derivative, $\frac{\mathrm{d}M}{\mathrm{d}T}{|}_{\mathrm{min}}$. (

**b**) Field dependence of the magnetization for two independent growths of both precursor and LFZ samples for T = 250 K. Inset: Low field region of M vs. H for the same samples of the main panel.

**Figure 7.**Normalized resistivity (left axis) and derivative of the logarithm of the resistivity (right axis) as a function of the inverse temperature for precursor and LFZ crystals. The Néel temperature and ${T}^{*}$ are indicated with arrows in dln$\rho $/d(1/T). The fitted thermally activated behavior for the LFZ crystal and the 1D variable range hopping for the precursor are presented as black continuous lines.

**Table 1.**Average composition of the precursor and the end-part of the ingot (LFZ) in at%. The standard deviation is indicated in parenthesis.

Ba | Fe | S | |
---|---|---|---|

Precursor | 17.2(1) | 32.9(3) | 49.9(4) |

LFZ | 17.16(4) | 32.79(6) | 50.05(9) |

**Table 2.**Details on data collection and structure refinement of a LFZ crystal as determined from single crystal X-ray diffraction.

Crystal Data | Data Collection | Refinement | |||
---|---|---|---|---|---|

Temperature (K) | 295 | 2 ${\theta}_{max}$ (°) | 62.93 | N${}_{parameters}$ | 21 |

Space group | Cmcm | Absorption correction | Multiscan | R${}_{1}>4\sigma $ (%) | 1.46 |

a (Å) | 8.7757(3) | T${}_{min}$ | 0.5834 | R${}_{1}$ all (%) | 1.86 |

b (Å) | 11.2248(4) | T${}_{max}$ | 0.7462 | wR${}_{2}>4\sigma $ (%) | 3.13 |

c (Å) | 5.2831(2) | N${}_{measured}$ | 5807 | wR${}_{2}$ all (%) | 3.25 |

Z | 4 | N${}_{independent}$ | 499 | G.O.F | 1.140 |

M${}_{r}$ | 345.17 | R${}_{int}$ (%) | 2.93 | $\Delta {\rho}_{min}$ (e·A${}^{-3}$) | −0.865 |

${\rho}_{calc}$ (g·cm${}^{-3}$) | 4.406 | $\Delta {\rho}_{max}$ (e·A${}^{-3}$) | 0.889 | ||

μ (mm${}^{-1}$) | 14.009 | weight w (a,b) | 0.0160 | ||

0.4559 |

**Table 3.**Fractional atomic coordinates, equivalent isotropic displacement parameters, and occupation factors of a LFZ single crystal at 295 K.

Atom | Site | x | y | z | U${}_{\mathit{e}\mathit{q}}$(Å${}^{2}$) | Occupancy |
---|---|---|---|---|---|---|

Ba | 4c | 0.5 | 0.18632(2) | 0.25 | 0.01854(8) | 1 |

Fe | 8e | 0.34635(4) | 0.5 | 0 | 0.01115(9) | 1.000(2) |

S${}_{1}$ | 4c | 0.5 | 0.61569(8) | 0.25 | 0.0115(2) | 1 |

S${}_{2}$ | 8g | 0.20762(8) | 0.37821(7) | 0.25 | 0.0194(2) | 1 |

Atom | U${}_{11}$ | U${}_{22}$ | U${}_{33}$ | U${}_{23}$ | U${}_{13}$ | U${}_{12}$ |
---|---|---|---|---|---|---|

Ba | 0.0187(1) | 0.0231(1) | 0.0138(1) | 0 | 0 | 0 |

Fe | 0.0098(2) | 0.0162(2) | 0.0074(2) | 0.00003(14) | 0 | 0 |

S${}_{1}$ | 0.0118(3) | 0.0133(4) | 0.0093(4) | 0 | 0 | 0 |

S${}_{2}$ | 0.0188(3) | 0.0280(3) | 0.0113(3) | 0 | 0 | −0.0124(3) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Amigó, M.L.; Maljuk, A.; Manna, K.; Stahl, Q.; Felser, C.; Hess, C.; Wolter, A.U.B.; Geck, J.; Seiro, S.; Büchner, B. Laser-Assisted Floating Zone Growth of BaFe_{2}S_{3} Large-Sized Ferromagnetic-Impurity-Free Single Crystals. *Crystals* **2021**, *11*, 758.
https://doi.org/10.3390/cryst11070758

**AMA Style**

Amigó ML, Maljuk A, Manna K, Stahl Q, Felser C, Hess C, Wolter AUB, Geck J, Seiro S, Büchner B. Laser-Assisted Floating Zone Growth of BaFe_{2}S_{3} Large-Sized Ferromagnetic-Impurity-Free Single Crystals. *Crystals*. 2021; 11(7):758.
https://doi.org/10.3390/cryst11070758

**Chicago/Turabian Style**

Amigó, Maria Lourdes, Andrey Maljuk, Kaustuv Manna, Quirin Stahl, Claudia Felser, Christian Hess, Anja U.B. Wolter, Jochen Geck, Silvia Seiro, and Bernd Büchner. 2021. "Laser-Assisted Floating Zone Growth of BaFe_{2}S_{3} Large-Sized Ferromagnetic-Impurity-Free Single Crystals" *Crystals* 11, no. 7: 758.
https://doi.org/10.3390/cryst11070758