Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O
Abstract
:1. Introduction
2. Experimental
2.1. Elaboration of (C6H8Cl2N2)2[Cd3Cl10]·6H2O
2.2. Charactrisation
2.2.1. X-ray Powder Diffraction (XRPD) Analysis
2.2.2. X-ray Single-Crystal Structural Analysis
2.2.3. Morphologies and EDX Analysis
2.2.4. Spectroscopic Measurements
2.2.5. Thermal Study
2.2.6. DFT Calculation
3. Results and Discussion
3.1. SEM Morphologies and EDX Analysis
3.2. X-ray Powder Diffraction (XRPD) Analysis
3.3. Crystal Structure Description
3.4. Hirshfeld Surface
3.5. Infrared Spectral Studies
3.6. Quantum Mechanical Study of (C6H8Cl2N2)2[Cd3Cl10]·6H2O
3.7. Molecular Electrosatatic Ootential (MEP) Analysis
3.8. Mulliken Population Analysis of (C6H8Cl2N2)2[Cd3Cl10]·6H2O
3.9. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; Lin, H.; Neu, J.; Zhou, Y.; Chaaban, M.; Lee, S.; Worku, M.; Chen, B.; Clark, R.J.; Cheng, W. Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency. ACS Energy Lett. 2019, 4, 1579–1583. [Google Scholar] [CrossRef]
- Aguirre-Díaz, L.M.; Reinares-Fisac, D.; Iglesias, M.; Gutiérrez-Puebla, E.; Gándara, F.; Snejko, N.; Monge, M.Á. Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coord. Chem. Rev. 2017, 335, 1–27. [Google Scholar] [CrossRef]
- Li, J.R.; Tao, Y.; Yu, Q.; Bu, X.-H.; Sakamoto, H.; Kitagawa, S. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. J. Chem. Eur. 2008, 14, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, B.L.; Niu, C.Y.; Niu, Y.Y.; Zhang, H.Y. Syntheses of Metal-2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity: Gas adsorption, thermal stability and fluorescent emission properties. J. Cryst. Growth 2009, 9, 3423–3431. [Google Scholar] [CrossRef]
- Brzostek, K.S.; Terlecki, M.; Sokołowski, K.; Lewinski, J. Chemical fixation and conversion of CO2 into cyclic and cage-type metal carbonates. Coord. Chem. Rev. 2017, 334, 199–231. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, R.; Titia, H.M.; Goldberg, I. Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3,5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd(ii), Cu(ii), Co(ii), Mn(ii) and Ni(ii) ions; synthesis, structure, and magnetic properties. CrystEngComm 2013, 15, 2863–2872. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O. Cambridge crystallographic data file. J. Autom. Chem. 1993, 8, 31–37. [Google Scholar]
- Brammer, L.; Swearingen, J.K.; Bruton, E.A.; Sherwood, P. Hydrogen bonding and perhalometallate ions: A supramolecular synthetic strategy for new inorganic materials. Proc. Natl. Acad. Sci. USA 2002, 99, 4956–4961. [Google Scholar] [CrossRef] [Green Version]
- Moulton, B.; Zaworotko, M.J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 6, 1629–1658. [Google Scholar] [CrossRef]
- Badawi, H.M.; Förner, W.; Ali, S.A. A comparative study of the infrared and Raman spectra of aniline and o-, m-, p-phenylenediamine isomers. Spectrochim. Acta Part A 2013, 112, 388–396. [Google Scholar] [CrossRef]
- Cao, Y.; Smith, P.; Heeger, A.J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth. Met. 1992, 48, 91–97. [Google Scholar] [CrossRef]
- Guo, T.; Wang, L.; Evans, D.G.; Yang, W. Synthesis and Photocatalytic Properties of a Polyaniline-intercalated layered protonic titanate nanocomposite with ap− n heterojunction structure. J. Phys. Chem. C 2010, 114, 4765–4772. [Google Scholar] [CrossRef]
- Li, T.; Yuan, C.; Zhao, Y.; Chen, Q.; Wei, M.; Wang, Y. Synthesis, characterization, and properties of aniline-p-phenylenediamine copolymers. High Perform. Polym. 2013, 25, 348–353. [Google Scholar] [CrossRef]
- Sharma, R.P.; Singh, A.; Venugopalan, P.; Yanan, G.; Yu, J.; Angeli, C.; Ferretti, V. Caging Anions through Crystal Engineering to Avoid Polymerization: Structural, Conformational and Theoretical Investigations of New Halocadmate [Cd2X7]3− Anions (X = Cl/Br). Eur. J. Inorg. Chem. 2012, 8, 1195–1203. [Google Scholar] [CrossRef]
- Luo, J.; Hong, M.; Wang, R.; Cao, R.; Shi, Q.; Weng, J. Self-Assembly of Five Cadmium (II) Coordination Polymers from 4,4′-Diaminodiphenylmethane. Eur. J. Inorg. Chem. 2003, 9, 1778–1784. [Google Scholar] [CrossRef]
- Bonnamartini, C.A.; Ferrari, A.M.; Pellacani, G.C. Organic-inorganic composite materials: Structural archetypes of linear polymeric chlorocadmates (II). Inorg. Chim. Acta 1998, 272, 252–260. [Google Scholar]
- Mercier, N.; Louvain, N.; Wenhua, B. Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm 2009, 11, 720–734. [Google Scholar] [CrossRef] [Green Version]
- CrystalClear. In Data Collection and Processing Software; Rigaku Corporation: Tokyo Japan, 1998–2014; pp. 196–8666.
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Cryst. Sect. A. 2015, 71, 59–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crystal Structure 4.1. In Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2014; pp. 196–8666.
- Brandenburg, K. Diamond Version 2.0; Impact GbR: Bonn, Germany, 1998. [Google Scholar]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, M.S.; Abdelbaky, M.S.; Ammar, S.; Salah, A.B.; Gadri, A.; García-Granda, S. Preparation, molecular structure, vibrational and photoluminescence study of a novel compound based chlorocadmate (II) material. J. Mol. Struct. 2018, 1165, 42–50. [Google Scholar] [CrossRef]
- Chaabane, I.; Hlel, F.; Guidara, K. Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2 CdCl4 and [C6H10N2]2Cd3Cl10 compounds. PMC Phys. B 2008, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dhieb, A.C.; Dridi, I.; Mathlouthi, M.; Rzaigui, M.; Smirani, W. Structural Physico Chemical Studies and Biological Analyses of a Cadmium Cluster Complex. J. Clust. Sci. 2018, 29, 1123–1131. [Google Scholar] [CrossRef]
- Gagor, A.; Waśkowska, A.; Czapla, Z.; Dacko, S. Structural phase transitions in tetra (isopropylammonium) decachlorotricadmate (II), [(CH3)2CHNH3]4Cd3Cl10, crystal with a two-dimensional cadmium (II) halide network. Acta Crystallogr. Sect. B 2011, 67, 122–129. [Google Scholar] [CrossRef] [PubMed]
- El Glaoui, M.; Kefi, R.; Lefebvre, F.; Jeanneau, E.; Ben Nasr, C. Crystal structure and spectroscopic studies of an inorganic-organic hybrid compound (C6H10N2)2(Cd3Cl10)·4H2O. Can. J. Anal. Sci. Spectros. 2008, 53, 241–248. [Google Scholar]
- Mitra, D.; Namrata, B.; Daliah, M.; Sekar, K. C-halogen…pi interactions in nucleic acids: A database study. J. Chem. Soc. 2020, 132, 1–6. [Google Scholar]
- Tan, S.L.; Lee, S.M.; Lo, K.M.; Otero-de-la-Roza, A.; Tiekink, E.R. Experimental and computational evidence for a stabilising C–Cl(lone-pair)π(chelate-ring) interaction. CrystEngComm 2021, 23, 119–130. [Google Scholar] [CrossRef]
- Ruhland, V.; Christopher, J. The Molecular Basis of Modern Marker Chemistry. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2011. [Google Scholar]
- Yang, Q.C.; Tang, Y.Q.; Yang, W.J.; Chen, H.Y. N-(3-Nitrobenzylidene)-p-phenylenediamine. Acta Crystallogr. Sect. C 1998, 54, 1532–1534. [Google Scholar] [CrossRef]
- Glomm, B.H.; Rutledge, G.C.; Küuchenmeister, F.; Neuenschwander, P.; Sute, U.W. Spinning and characterization of fibers from poly (2,6-dichloro-p-phenyleneterephthalamide): A study of constitutional isomerism and solid-state arrangements by comparison between simulation and experiment. Macromol. Chem. Phys. 1994, 195, 475–510. [Google Scholar] [CrossRef]
- Seth, S.K.; Sarkar, D.; Roy, A.; Kar, T. Insight into supramolecular self-assembly directed by weak interactions in acetophenone derivatives: Crystal structures and Hirshfeld surface analyses. CrystEngComm 2011, 13, 6728–6741. [Google Scholar] [CrossRef]
- Spackman, M.A.; Dylan, J. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Anthony, S.M. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B. 2004, 60, 627–668. [Google Scholar] [CrossRef] [PubMed]
- Jelsch, C.; Ejsmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hajji, M.; Kouraichi, C.; Guerfel, T. Modelling, structural, thermal, optical and vibrational studies of a new organic–inorganic hybrid material (C5H16N2)Cd1.5Cl5. Bull. Mater. Sci. 2017, 40, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Kolcu, F.; Kaya, İ. A study of the chemical and the enzyme-catalyzed oxidative polymerization of aromatic diamine bearing chlor substituents, pursuant to structural, thermal and photophysical properties. Eur. Polym. J. 2020, 133, 109767. [Google Scholar] [CrossRef]
- Wang, G.E.; Wang, M.S.; Jiang, X.M.; Liu, Z.F.; Lin, R.G.; Cai, L.Z.; Guo, G.C.; Huang, J.S. Crystal structures and optical properties of 1-D iodoplumbates templated by in situ synthesized p-phenylenediamine derivatives. Inorg. Chem. Commun. 2011, 14, 1957–1961. [Google Scholar] [CrossRef]
Crystal Data | |
Chemical formula | Cd3Cl10·2(C6H8Cl2N2)·6(H2O) |
Mr | 1157.95 |
Crystal system, space group | Triclinic, P |
Temperature (K) | 150 |
a, b, c (Å) | 6.784 (4), 9.552 (6), 13.592 (9) |
α, β, γ (°) | 102.247 (9), 92.665 (11), 97.160 (7) |
V (Å3) | 851.6 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.99 |
Crystal size (mm) | 0.4 × 0.15 × 0.15 |
Data Collection | |
Diffractometer | Rigaku Mercury |
Absorption correction: | Multi-scan |
Tmin, Tmax | 0.421, 0.638 |
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections | 9842, 3887, 3357 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.100, 1.11 |
No. of reflections | 3887 |
No. of parameters | 198 |
No. of restraints | 5 |
Δρmax, Δρmin (e Å−3) | 0.99, −1.57 |
CCDC No | 2061865 |
Distances (Å) in [Cd(1)Cl6]2− | Distances (Å) in [Cd(2)Cl6]2− | ||
Cd1—Cl3 | 2.6998 (16) | Cd2—Cl3iii | 2.6480 (17) |
Cd1—Cl3i | 2.6998 (16) | Cd2—Cl3 | 2.8180 (16) |
Cd1—Cl4ii | 2.6125 (17) | Cd2—Cl4 | 2.6471 (16) |
Cd1—Cl4iii | 2.6125 (17) | Cd2—Cl5 | 2.6506 (16) |
Cd1—Cl5i | 2.5857 (15) | Cd2—Cl6 | 2.5269 (15) |
Cd1—Cl5 | 2.5857 (15) | Cd2—Cl7 | 2.5681 (16) |
Angles (°) in [Cd3Cl10]4− | |||
Cl3—Cd1—Cl3i | 180.0 | Cl4—Cd2—Cl3 | 91.58 (3) |
Cl4ii—Cd1—Cl3 | 95.52 (3) | Cl4—Cd2—Cl3iii | 84.83 (3) |
Cl4iii—Cd1—Cl3i | 95.52 (3) | Cl5—Cd2—Cl3 | 82.78 (3) |
Cl4ii—Cd1—Cl3i | 84.48 (3) | Cl5—Cd2—Cl3iii | 89.82 (3) |
Cl4iii—Cd1—Cl3 | 84.48 (3) | Cl5—Cd2—Cl4 | 172.55 (3) |
Cl4iii—Cd1—Cl4ii | 180.0 | Cl6—Cd2—Cl3 | 84.46 (3) |
Cl5—Cd1—Cl3i | 93.63 (3) | Cl6—Cd2—Cl3iii | 168.21 (3) |
Cl5—Cd1—Cl3 | 86.37 (3) | Cl6—Cd2—Cl4 | 90.00 (3) |
Cl5i—Cd1—Cl3i | 86.37 (3) | Cl6—Cd2—Cl5 | 94.27 (3) |
Cl5i—Cd1—Cl3 | 93.63 (3) | Cl7—Cd2—Cl3 | 172.96 (3) |
Cl5—Cd1—Cl4ii | 89.73 (3) | Cl7—Cd2—Cl3iii | 94.57 (3) |
Cl5i—Cd1—Cl4iii | 89.73 (3) | Cl7—Cd2—Cl4 | 95.40 (3) |
Cl5—Cd1—Cl4iii | 90.27 (3) | Cl7—Cd2—Cl5 | 90.18 (3) |
Cl5i—Cd1—Cl4ii | 90.27 (3) | Cl7—Cd2—Cl6 | 96.47 (3) |
Cl5i—Cd1—Cl5 | 180.0 | Cd2—Cl3—Cd1i | 91.97 (3) |
Cd2—Cl4—Cd1vi | 96.39 (3) | Cd2iii—Cl3—Cd1i | 94.30 (3) |
Cd2—Cl5—Cd1i | 98.57 (3) |
Distances (Å) in (C6H8Cl2N2)2+ | |||
Cl8—C18 | 1.727 (4) | Cl9—C20 | 1.731 (4) |
N13—C17 | 1.477 (5) | N14—C15 | 1.452 (5) |
C17—C18 | 1.388 (5) | C15—C16 | 1.393 (5) |
C17—C19 | 1.376 (5) | C15—C20 | 1.395 (6) |
C18—C19 | 1.388 (5) | C16—C20 | 1.385 (6) |
Angles (°) in (C6H8Cl2N2)2+ | |||
C18—C17—N13 | 120.7 (3) | C16—C15—N14 | 120.0 (4) |
C19—C17—N13 | 118.0 (3) | C20—C15—N14 | 120.6 (3) |
C19—C17—C18 | 121.1 (4) | C20—C15—C16 | 119.4 (4) |
C17—C18—Cl8 | 120.4 (3) | C20—C16—C15 | 119.4 (4) |
C19—C18—Cl8 | 120.1 (3) | C15—C20—Cl9 | 118.8 (3) |
C19—C18—C17 | 119.4 (4) | C16—C20—Cl9 | 120.0 (3) |
C18—C19—C17 | 119.5 (3) | C16—C20—C15 | 121.2 (4) |
D-H…A | D-H | H…A | D…A | D-H…A |
---|---|---|---|---|
N14—H14a…O11vii | 0.88 (3) | 1.88 (3) | 2.768 (5) | 178 (3) |
N14—H14c…O12viii | 0.88 (3) | 1.99 (3) | 2.851 (5) | 164 (2) |
N13—H13b…O11vi | 0.97 (4) | 2.01 (4) | 2.946 (6) | 162 (4) |
N14—H14b…Cl6ix | 0.99 (2) | 2.19 (4) | 3.118 (5) | 156 (6) |
N13—H13a…Cl5i | 0.98 (6) | 2.66 (5) | 3.200 (5) | 115 (3) |
N13—H13a…Cl6v | 0.98 (6) | 2.35 (5) | 3.139 (4) | 138 (4) |
O11—H11b…O12ii | 0.93 (5) | 1.80 (5) | 2.728 (4) | 174 (5) |
O12—H12b…O10A | 0.90 (6) | 1.93 (6) | 2.817 (15) | 174 (6) |
O12—H12b…O10Biii | 0.90 (6) | 2.03 (6) | 2.878 (14) | 157 (6) |
Atoms | H | Cl | C | Cd | O |
---|---|---|---|---|---|
Surface% | 35.65 | 39.4 | 13.45 | 6.3 | 1.5 |
O | 2.8 | 0 | 0 | 0 | 0 |
Cd | 0.04 | 2.49 | 0 | 0 | 0 |
C | 0.14 | 0.72 | 4.9 | 0 | 0 |
Cl | 1.38 | 0.63 | 0.72 | 2.49 | 0 |
H | 1.09 | 1.38 | 0.14 | 0.04 | 2.8 |
Atom | Mulliken Charge |
---|---|
C1 | 1.331123 |
C2 | −4.737247 |
C3 | −1.070936 |
H(C3) | 0.206980 |
C4 | −1.443429 |
C5 | 0.547071 |
C6 | 1.649255 |
H(C6) | 0.271790 |
Cl7 | −0.075264 |
Cl9 | 0.262067 |
N8 | 1.487065 |
H(N8) | 0.380289 0.392109 0.403416 |
N10 | −1.070241 |
H(N10) | 0.523128 0.497461 0.479144 |
Cd | 1.202720 1.335296 1.175898 |
Cl | −0.680423 −0.919000 −0.747317 −0.452354 −0.606892 −0.576617 −0.534910 −0.845237 −0.556969 −0.728453 −0.787878 −0.596435 −0.715207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermi, S.; Althobaiti, M.G.; Alotaibi, A.A.; Almarri, A.H.; Fujita, W.; Lefebvre, F.; Ben Nasr, C.; Mrad, M.H. Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O. Crystals 2021, 11, 553. https://doi.org/10.3390/cryst11050553
Hermi S, Althobaiti MG, Alotaibi AA, Almarri AH, Fujita W, Lefebvre F, Ben Nasr C, Mrad MH. Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O. Crystals. 2021; 11(5):553. https://doi.org/10.3390/cryst11050553
Chicago/Turabian StyleHermi, Sabrine, Mohammed G. Althobaiti, Abdullah A. Alotaibi, Abdulhadi H. Almarri, Wataru Fujita, Frédéric Lefebvre, Cherif Ben Nasr, and Mohamed Habib Mrad. 2021. "Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O" Crystals 11, no. 5: 553. https://doi.org/10.3390/cryst11050553
APA StyleHermi, S., Althobaiti, M. G., Alotaibi, A. A., Almarri, A. H., Fujita, W., Lefebvre, F., Ben Nasr, C., & Mrad, M. H. (2021). Synthesis, Crystal Structure, DFT Theoretical Calculationand Physico-Chemical Characterization of a New Complex Material (C6H8Cl2N2)2[Cd3Cl10]·6H2O. Crystals, 11(5), 553. https://doi.org/10.3390/cryst11050553