The Reactivity of the Imine Bond within Polynuclear Nickel(II) Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses
2.1.1. Tetranuclear Complex 1
2.1.2. Trinuclear Complex 2
2.1.3. Mononuclear Complex 3
2.1.4. Cubane 4
2.2. Physicochemical Measurements
2.2.1. FT-IR Measurements
2.2.2. Elemental Analysis
2.2.3. X-ray Diffraction
2.2.4. Magnetic Susceptibility Measurements in the Solution: Evans Method
2.2.5. Computational Details
3. Results and Discussion
3.1. Synthesis and FT-IR Measurements
3.2. Crystal Structures
3.3. Magnetic Properties by Evans Method
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Raiche organischer Basen. Justus Liebigs Ann. Chem. 1864, 131, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hamon, J.-R. Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord. Chem. Rev. 2019, 389, 94–118. [Google Scholar] [CrossRef]
- Sakthivel, A.; Jeyasubramanian, K.; Thangagiri, B.; Dhaveethu Raja, J. Recent advances in Schiff base metal complexes derived from 4-aminoantipyrine derivatives and their potential applications. J. Mol. Struct. 2020, 1222, 128885. [Google Scholar] [CrossRef]
- Udhayakumari, D.; Inbaraj, V. A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J. Fluoresc. 2020, 30, 1203–1223. [Google Scholar] [CrossRef]
- Mielcarek, A.; Bieńko, A.; Saramak, P.; Jezierska, J.; Dołęga, A. Cu/Zn heterometallic complex with solvent-binding cavity, catalytic activity for oxidation of 1-phenylethanol and unusual magnetic properties. Dalton Trans. 2019, 48, 17780–17791. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, D.; Xu, G.; Yang, H.; Li, J.; Song, H.; Sun, W.-H. Synthesis and characterization of new bis(1-aryliminomethylenylnaphthalen-2-oxy)nickel complexes and their catalytic behavior for vinyl polymerization of norbornene. J. Organomet. Chem. 2004, 689, 936–946. [Google Scholar] [CrossRef]
- Ikram, M.; Rehman, S.U.; Rehman, S.; Baker, R.J.; Schulzke, C. Synthesis, characterization and distinct butyrylcholinesterase activities of transition metal complexes of 2-[(E)-(quinolin-3-ylimino)methyl]phenol. Inorg. Chim. Acta 2012, 390, 210–216. [Google Scholar] [CrossRef]
- Kuchtanin, V.; Kleščíková, L.; Šoral, M.; Fischer, R.; Růžičková, Z.; Rakovský, E.; Moncoľ, J.; Segľa, P. Nickel(II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions. Polyhedron 2016, 117, 90–96. [Google Scholar] [CrossRef]
- Drummond, J.; Wood, J.S. Crystal and Molecular Structure and Magnetic Properties of a Tetrameric Copper Complex formed by the Terdentate Ligand N-2-Pyridylsalicylaldimine. J. Chem. Soc. Dalton Trans. 1972, 365–369. [Google Scholar] [CrossRef]
- Shen, Y.-Z.; Gu, H.; Pan, Y.; Dong, G.; Wu, T.; Jin, X.-P.; Huang, X.-Y.; Hu, H. Synthesis and characterization of dialkylgallium (dialkylindium) complexes of N-salicylidene 2-aminopyridine and N-salicylidene 2-methoxyaniline: Crystal structure of dimethyl[N-salicylidene 2-aminopyridine]gallium. J. Organomet. Chem. 2000, 605, 234–238. [Google Scholar] [CrossRef]
- Zhu, H.-L.; Liu, X.-Y. Syntheses and Crystal Structures of a Pair of Trinuclear Cobalt(II) Complexes with the Cations [Co3L4(APYH)2] and [Co3L4(APY)2] (APY = 2-aminopyridine, L = N-salicylaldehyde-2-iminopyridine). Synth. React. Inorg. Met. Org. Nano Metal. Chem. 2005, 35, 193–196. [Google Scholar] [CrossRef]
- Ran, J.-W.; Zhang, S.-Y.; Hu, B.; Xu, B.; Li, Y. Trinuclear and mononuclear nickel(II) complexes incorporating tridentate 2-[(pyridine-2-ylimine)methyl]phenol ligand: Syntheses, crystal structures and magnetic properties. Inorg. Chem. Commun. 2008, 11, 1474–1477. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, Z.; Chen, H.; Wang, D.; Nie, Y. Bis{2-[(2-pyridyl)iminomethyl]-phenolato}copper(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2009, E65, m904. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.-H.; Chen, H.-Y.; Li, L.-N.; Xie, M.-J. Tris [2-(2-pyridylimino-methyl)phenolato(0.67)]-europium(III) nitrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, E65, m697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, F.; Tinant, B.; Clérac, R.; Jacquemin, P.-L.; Garcia, Y. Self-assembly of asymmetric tetranuclear Cu(II) [2×2] grid-like complexes and of a dinuclear Ni(II) complex from pyridyl-phenol Schiff base ligands. Polyhedron 2010, 29, 2739–2746. [Google Scholar] [CrossRef]
- Chang, H.-C.; Cole, J.M.; Lin, T.-C.; Sylvester, S.O.; Waddell, P.G. Bis{l-2-[(pyridin-2-yl)iminomethyl]-phenolato}bis[(2-formylphenolato)-copper(II)]. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, E67, m690. [Google Scholar] [CrossRef]
- Giri, S.; Biswas, S.; Drew, M.G.B.; Ghosh, A.; Saha, S.K. Structure and magnetic properties of a tetranuclear Cu(II) complex containing the 2-(pyridine-2-yliminomethyl)-phenol ligand. Inorg. Chim. Acta 2011, 368, 152–156. [Google Scholar] [CrossRef]
- Dame, A.N.; Bharara, M.S.; Barnes, C.L.; Walensky, J.R. Synthesis of Thorium(IV) and Uranium(IV) Salicylaldiminate Pseudo-Halide Complexes. Eur. J. Inorg. Chem. 2015, 2996–3005. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Brown, A.J.; Meng, Y.-S.; Sun, H.-L.; Gao, S. Linear trinuclear cobalt(II) single molecule magnet. Dalton Trans. 2015, 44, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Mongal, B.N.; Dutta, A.; Mondal, P.; Lewis, W.; Saba, N.; Naskar, S. Complexation study of Schiff base ligand: Pyridin-2-ylimino methyl naphthanol with Co2+, Mn2+ and Ni2+ ions in solid and solution phase. J. Coord. Chem. 2016, 69, 2364–2376. [Google Scholar] [CrossRef]
- Jia, W.-G.; Zhang, H.; Zhang, T.; Xie, D.; Ling, S.; Sheng, E.-H. Half-Sandwich Ruthenium Complexes with Schiff-Base Ligands: Syntheses, Characterization, and Catalytic Activities for the Reduction of Nitroarenes. Organometallics 2016, 35, 503–512. [Google Scholar] [CrossRef]
- Jafari, M.; Salehi, M.; Kubicki, M.; Arab, A.; Khaleghian, A. DFT studies and antioxidant activity of Schiff base metal complexes of 2-aminopyridine. Crystal structures of cobalt(II) and zinc(II) complexes. Inorg. Chim. Acta 2017, 462, 329–335. [Google Scholar] [CrossRef]
- Enamullah, M.; Vasylyeva, V.; Abdul Quddus, M.; Islam, M.K.; Höfert, S.-P.; Janiak, C. Spontaneous resolution of a Δ/Λ-chiral-at-metal pseudo-tetrahedral Schiff-base zinc complex to a racemic conglomerate with C–H⋯O organized 41- and 43-helices. CrystEngComm 2018, 20, 4724–4734. [Google Scholar] [CrossRef]
- Enamullah, M.; Islam, M.A.; Kautz, A.C.; Janiak, C. Synthesis, spectroscopy, electrochemistry, and molecular structure of tetrakis{(E)-2-((pyridin-2-ylimino)methyl)phenolato}(hydroxido)0.5(nitrato)1.5-tetracopper(II) nitrate hydroxide. J. Coord. Chem. 2018, 71, 2557–2568. [Google Scholar] [CrossRef]
- Liu, S.; Deng, Y.-F.; Li, C.A.; Chang, X.; Zhang, Y.-Z. A linear trinuclear ferrous single molecule magnet. Dalton Trans. 2018, 47, 16704–16708. [Google Scholar] [CrossRef]
- Pradhan, K.C.; Barik, S.; Singh, B.C.; Mohapatra, P.; Kisan, H.K.; Pal, S. Synthesis, characterisation and theoretical studies of a series of Iridium(III) heteroleptic complexes with Schiff base ligands. J. Mol. Struct. 2020, 1211, 128058. [Google Scholar] [CrossRef]
- Mielcarek, A.; Wiśniewska, A.; Dołęga, A. Unassisted formation of hemiaminal ether from 4-aminopyridine and o-vanillin—experimental and theoretical study. Struct. Chem. 2018, 29, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Ayikoe, K.; Butcher, R.J.; Gultneh, Y. Tetra-μ3-methanolato-tetrakis[(2-formyl-6-methoxyphenolato)methanolnickel(II)]. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, E66, m1487–m1488. [Google Scholar] [CrossRef]
- Yu, G.-M.; Zhao, L.; Zou, L.-F.; Guo, Y.-N.; Xu, G.-F.; Li, Y.-H.; Tang, J. A Tetranuclear Nickel(II) Cubane Complex with O-Vanillin Ligand. J. Chem. Crystallogr. 2011, 41, 606–609. [Google Scholar] [CrossRef]
- Habib, F.; Cook, C.; Korobkov, I.; Murugesu, M. Novel in situ manganese-promoted double-aldol addition. Inorg. Chim. Acta 2012, 380, 378–385. [Google Scholar] [CrossRef]
- Costes, J.-P.; Novitchi, G.; Vendier, L.; Pilet, G.; Luneau, D. Magnetic ordering of NiII4 Cubane complexes through hydrogen bonds. C. R. Chim. 2012, 15, 849–855. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhang, Y.D.; Zou, H.H.; Guo, J.J.; Li, H.P.; Song, Y.; Liang, H. A family of cubane cobalt and nickel clusters: Syntheses, structures and magnetic properties. Inorg. Chim. Acta 2013, 396, 119–125. [Google Scholar] [CrossRef]
- X-Area 1.75, STOE & Cie GmbH, Software Package for Collecting Single-Crystal Data on STOE Area-Detector Diffractometers, for Image Processing, Scaling Reflection Intensities and for Outlier Rejection; STOE: Darmstadt, Germany, 2015.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2015, C71, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.F. The Determination of the Paramagnetic Susceptibility of Substances in Solution by Nuclear Magnetic Resonance. J. Chem. Soc. 1959, 2003–2005. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Bühl, M.; Kabrede, H. Geometries of Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2006, 2, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Bühl, M.; Reimann, C.; Pantazis, D.A.; Bredow, T.; Neese, F. Geometries of third-row transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2008, 4, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, K.P. Bioinorganic Chemistry Modeled with the TPSSh Density Functional. Inorg. Chem. 2008, 47, 10357–10365. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic Regular Two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic Total-Energy Using Regular Approximations. J. Chem. Phys. 1994, 101, 9783–9792. [Google Scholar] [CrossRef]
- Van Leeuwen, R.; van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J. Chem. Phys. 1994, 101, 1272–1281. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Chen, X.Y.; Landis, C.R.; Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 2008, 4, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 17; University of Western Australia: Crawley, Australia, 2017. [Google Scholar]
- Pait, M.; Sarkar, A.; Colacio, E.; Ray, D. Hydrolysis on Di-Schiff Base Ligand During Dinuclear Ni(II) Complex Formation: Synthesis, Crystal Structures and Magneto-Structural Correlation Studies. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2014, 84, 189–196. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, D.-Q. Aqua-bis(o-vanillinato-κ2O,O’)nickel(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2008, E64, m298. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Lo, W.-C.; Chou, C.-C.; Lee, G.-H.; Chen, J.-M.; Peng, S.-M. Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes: [Ni5(μ5-tpda)4 × 2] (X = Cl−, CN−, N3−, NCS−) and [Ni5(μ5-tpda)4(CH3CN)2](PF6)2 (tpda2− = the Tripyridyldiamido Dianion). Inorg. Chem. 1998, 37, 4059–4065. [Google Scholar] [CrossRef] [PubMed]
- Tsou, L.-H.; Sigrist, M.; Chiang, M.-H.; Horng, E.-C.; Chen, C.-H.; Huang, S.-L.; Lee, G.-H.; Peng, S.-M. Asymmetric tetranuclear nickel chains with unidirectionally ordered 2-(α-(5-phenyl)pyridylamino)-1,8-naphthyridine ligands. Dalton Trans. 2016, 45, 17281–17289. [Google Scholar] [CrossRef] [PubMed]
- Botana, L.; Ruiz, J.; Mota, A.J.; Rodríguez-Diéguez, A.; Seco, J.M.; Oyarzabal, I.; Colacio, E. Anion controlled structural and magnetic diversity in unusual mixed-bridged polynuclear NiII complexes with a versatile bis(2-methoxy phenol)diamine hexadentate ligand. An experimental and theoretical magneto-structural study. Dalton Trans. 2014, 43, 13509–13524. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mandal, D.; Ghosh, D.; Goldberg, I.; Chaudhury, M. Equilibrium Studies in Solution Involving Nickel(II) Complexes of Flexidentate Schiff Base Ligands: Isolation and Structural Characterization of the Planar Red and Octahedral Green Species Involved in the Equilibrium. Inorg. Chem. 2003, 42, 8439–8445. [Google Scholar] [CrossRef]
- Salem, N.M.H.; Rashad, A.R.; El Sayed, L.; Haase, W.; Iskander, M.F. Synthesis, characterization, molecular and supramolecular structures of nickel(II) complexes derived from α-diketone and α-ketoaldehyde bisaroylhydrazones. Polyhedron 2009, 28, 2137–2148. [Google Scholar] [CrossRef]
- Stamos, N.-A.; Ferentinos, E.; Chrysina, M.; Raptopoulou, C.P.; Psycharis, V.; Sanakis, Y.; Pantazis, D.A.; Kyritsis, P.; Mitrikas, G. Unusual 31P Hyperfine Strain Effects in a Conformationally Flexible Cu(II) Complex Revealed by Two-Dimensional Pulse EPR Spectroscopy. Inorg. Chem. 2020, 59, 3666–3676. [Google Scholar] [CrossRef]
Complex | 1 | 2 | 3 |
---|---|---|---|
Empirical formula | C78H68N11Ni4O14 | C64H64N14Ni3O16 | C21H22N2NiO7 |
Formula weight | 1618.27 | 1461.42 | 473.11 |
Wavelength [Å] | 1.54186 | 0.71073 | 1.54186 |
T [K] | 120 | 120 | 120 |
Crystal system | Triclinic | Monoclinic | Monoclinic |
Space group | P-1 | P21/c | C2/c |
a [Å] | 12.434(4) | 10.968(2) | 26.1635(18) |
b [Å] | 13.457(7) | 11.3388(10) | 8.2172(4) |
c [Å] | 14.017(8) | 25.401(4) | 22.5523(16) |
α [°] | 110.93(4) | 90.00 | 90.00 |
β [°] | 96.74(4) | 92.286(14) | 124.023(4) |
γ [°] | 107.61(4) | 90.00 | 90.00 |
V [Å3] | 2019.8(18) | 3156.5(8) | 4018.5(5) |
Z | 1 | 2 | 8 |
Dc [g cm−3] | 1.327 | 1.538 | 1.564 |
μ [mm−1] | 1.60 | 0.97 | 1.82 |
F [000] | 837 | 1516 | 1968 |
Reflection collected | 25,249 | 16,009 | 16,348 |
Unique reflections | 6972 | 6136 | 3605 |
Parameters | 491 | 443 | 298 |
Rint | 0.033 | 0.073 | 0.051 |
GOOF | 1.105 | 1.006 | 1.071 |
R1[I > 2σ(I)] | 0.0674 | 0.0626 | 0.0492 |
wR2 (all data) | 0.0843 | 0.1392 | 0.0683 |
Complex | 1 | 3 |
---|---|---|
Formula | C78H78N14Ni4O24 | C21H22N2NiO7 |
Mass (g·mol−1) | 1830.31 | 473.10 |
Mass of the redissolved Ni compound (g) | 0.0143 | 0.0061 |
Mass of DMSO-d6 (g) | 0.8328 | 2.7337 |
Δf (Hz) | 326.8 | 41.5 |
Effective magnetic moment μeff based on the conducted NMR measurement (μB) | 6.62 | 3.33 |
Number of unpaired electrons (predicted magnetic moment (μB)) | 8 (8.94) | 2 (2.83) |
Bond/Metal Ion | M = Zn | M = Cu | M = Ni | M = Co |
---|---|---|---|---|
M–O | 0.70/0.58 | 0.73/0.69 | 0.53 | 0.68/0.62 |
M–N | 0.63/0.54 | 0.72/0.69 | 0.54 | 0.65/0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siedzielnik, M.; Pantazis, D.A.; Bruniecki, J.; Kaniewska-Laskowska, K.; Dołęga, A. The Reactivity of the Imine Bond within Polynuclear Nickel(II) Complexes. Crystals 2021, 11, 512. https://doi.org/10.3390/cryst11050512
Siedzielnik M, Pantazis DA, Bruniecki J, Kaniewska-Laskowska K, Dołęga A. The Reactivity of the Imine Bond within Polynuclear Nickel(II) Complexes. Crystals. 2021; 11(5):512. https://doi.org/10.3390/cryst11050512
Chicago/Turabian StyleSiedzielnik, Magdalena, Dimitrios A. Pantazis, Jakub Bruniecki, Kinga Kaniewska-Laskowska, and Anna Dołęga. 2021. "The Reactivity of the Imine Bond within Polynuclear Nickel(II) Complexes" Crystals 11, no. 5: 512. https://doi.org/10.3390/cryst11050512
APA StyleSiedzielnik, M., Pantazis, D. A., Bruniecki, J., Kaniewska-Laskowska, K., & Dołęga, A. (2021). The Reactivity of the Imine Bond within Polynuclear Nickel(II) Complexes. Crystals, 11(5), 512. https://doi.org/10.3390/cryst11050512