Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys
Abstract
:1. Introduction
2. Experimental Procedure
3. Experimental Results
4. Discussion
4.1. Strengthening Mechanisms
4.2. Fracture Mechanisms
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanda, B.; Potnis, G.; Jana, P.P.; Das, J. A review on nano-/ultrafine advanced eutectic alloys. J. Alloy. Compd. 2020, 827, 154226. [Google Scholar] [CrossRef]
- Cantor, B.; Chadwick, G.A. The tensile deformation of unidirectionally solidified Al–Al3Ni and Al–Al2Cu eutectics. J. Mater. Sci. 1975, 10, 578–588. [Google Scholar] [CrossRef]
- Cantor, B.; May, G.J.; Chadwick, G.A. The tensile fracture behavior of the aligned Al–Al3Ni and Al–CuAl2 eutectics at various temperatures. J. Mater. Sci. 1973, 8, 830–838. [Google Scholar] [CrossRef]
- Park, J.M.; Mattern, N.; Kühn, U.; Eckert, J.; Kim, K.B.; Kim, W.T.; Chattopadhyay, K.; Kim, D.H. High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J. Mater. Res. 2009, 24, 2605–2609. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Kim, K.B.; Yi, S.; Park, J.M.; Sohn, S.W.; Kim, T.E.; Kim, D.H.; Das, J.; Eckert, J. Formation of a bimodal eutectic structure in Ti–Fe–Sn alloys with enhanced plasticity. Appl. Phys. Lett. 2008, 93, 141901. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, T.E.; Sohn, S.W.; Kim, D.H.; Kim, K.B.; Kim, W.T.; Eckert, J. High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 2008, 93, 031913. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Cao, Y.; Huang, W. Microstructure evolution in laser surface remelting of Ni–33 wt.%Sn alloy. J. Alloy. Compd. 2013, 577, 309–314. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Guo, P.; Gao, X.; Yang, L.; Song, Z. Effects of laser surface remelting on microstructure and properties of biodegradable Zn-Zr alloy. Mater. Lett. 2018, 226, 52–54. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Kim, D.; Mattern, N.; Li, R.; Liu, G.; Eckert, J. Multi-phase Al-based ultrafine composite with multi-scale microstructure. Intermetallics 2010, 18, 1829–1833. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, D.H.; Kim, K.B.; Eckert, J.M. Improving the plasticity of a high strength Fe–Si–Ti ultrafine composite by introduction of an immiscible element. Appl. Phys. Lett. 2010, 97, 251915. [Google Scholar] [CrossRef]
- Tiwari, C.S.; Roy Mahapatra, D.; Chattopadhyay, K. Appl. Phys. Lett. 2012, 101, 171901. [CrossRef]
- Zhang, L.; Lu, H.-B.; Mickel, C.; Eckert, J. Ductile ultrafine-grained Ti-based alloys with high yield strength. Appl. Phys. Lett. 2007, 91, 51906. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, G.L.; Kakitani, R.; Gomes, L.F.; Afonso, C.R.M.; Cheung, N.; Spinelli, J.E. Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties. J. Mater. Res. 2019, 34, 1381–1384. [Google Scholar] [CrossRef]
- Kim, J.T.; Lee, S.W.; Hong, S.H.; Park, H.J.; Park, J.Y.; Lee, N.; Seo, Y.; Wang, W.M.; Park, J.M.; Kim, K.B. Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 2016, 92, 1038–1045. [Google Scholar] [CrossRef]
- Wang, S.; Xie, D.; Wang, J.; Misra, A. Deformation behavior of nanoscale Al–Al2Cu eutectics studied by in situ micropillar compression. Mater. Sci. Eng. A 2021, 800, 140311. [Google Scholar] [CrossRef]
- Lien, H.-H.; Mazumder, J.; Wang, J.; Misra, A. Ultrahigh strength and plasticity in laser rapid solidified Al–Si nanoscale eutectics. Mater. Res. Lett. 2020, 8, 291–298. [Google Scholar] [CrossRef]
- Lei, Q.; Ramakrishnan, B.P.; Wang, S.; Wang, Y.; Mazumder, J.; Misra, A. Structural refinement and nanomechanical response of laser remelted Al-Al2Cu lamellar eutectic. Mater. Sci. Eng. A 2017, 706, 115–125. [Google Scholar] [CrossRef]
- Ramakrishnan, B.P.; Lei, Q.; Misra, A.; Mazumder, J. Effect of laser surface remelting on the microstructure and properties of Al-Al2Cu-Si ternary eutectic alloy. Sci. Rep. 2017, 7, 13468. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, G.; Xie, D.; Lei, Q.; Ramakrishnan, B.; Mazumder, J.; Wang, J.; Misra, A. Plasticity of laser-processed nanoscale Al Al2Cu eutectic alloy. Acta Mater. 2018, 156, 52–63. [Google Scholar] [CrossRef]
- Liu, G.; Xie, D.; Wang, S.; Misra, A.; Wang, J. Mesoscale crystal plasticity modeling of nanoscale Al–Al2Cu eutectic alloy. Int. J. Plast. 2019, 121, 134–152. [Google Scholar] [CrossRef]
- Wang, J.; Misra, A. Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 2014, 18, 19–28. [Google Scholar] [CrossRef]
- Armstrong, R.W. Size effects on material yield strength/deformation/fracturing properties. J. Mater. Res. 2019, 34, 2161–2176. [Google Scholar] [CrossRef]
- Porter, D.; Easterling, K.; Smith, G. Dynamic studies of the tensile deformation and fracture of pearlite. Acta Met. 1978, 26, 1405–1422. [Google Scholar] [CrossRef]
- Lewandowski, J.; Thompson, A. Micromechanisms of cleavage fracture in fully pearlitic microstructures. Acta Metall. 1987, 35, 1453–1462. [Google Scholar] [CrossRef]
Eutectics | Processing | Morphology | Strain to Fracture (%) | Maximum Strength (MPa) |
---|---|---|---|---|
Al–Al2Cu | As-cast | Lamellae | 3.3 | 742 |
Al–Al2Cu | As-cast | Degenerate | 5.6 | 1180 |
Al–Al2Cu | Laser-remelted | Lamellae | 26.5 | 2075 |
Al–Al2Cu–Si | As-cast | Mixed | 4.8 | 480 |
Al–Al2Cu–Si | As-cast | Mixed | 4.6 | 405 |
Al–Al2Cu–Si | Laser-remelted | Bimodal | 29.1 | 1343 |
Al–Al2Cu–Si | Laser-remelted | Bimodal | 28.5 | 1586 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Q.; Wang, J.; Misra, A. Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys. Crystals 2021, 11, 194. https://doi.org/10.3390/cryst11020194
Lei Q, Wang J, Misra A. Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys. Crystals. 2021; 11(2):194. https://doi.org/10.3390/cryst11020194
Chicago/Turabian StyleLei, Qian, Jian Wang, and Amit Misra. 2021. "Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys" Crystals 11, no. 2: 194. https://doi.org/10.3390/cryst11020194
APA StyleLei, Q., Wang, J., & Misra, A. (2021). Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys. Crystals, 11(2), 194. https://doi.org/10.3390/cryst11020194