Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Coleus amboinicus Extract
2.2.2. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles
2.2.3. Characterization Techniques
2.2.4. Catalytic Reduction of 4-Nitrophenol by Pd-RGO
2.2.5. Antimicrobial Activity of Palladium-Reduced Graphite Oxide Nanoparticle
3. Result and Discussion
3.1. UV-Visible Spectroscopy
3.2. Structural Analysis of RGO-PN by XRD
3.3. SEM and TEM Analysis
3.4. XPS Analysis
3.5. Catalytic Reduction of 4-Nitrophenol by Pd-RGO100 Nanoparticles
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Kalsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Suchismita, G.; Wenzhong, B.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Yan, Q.; Ji, J.; Qiu, B.; Zhang, J.; Xing, M. Graphene-Based Photo-Fenton Catalysts for Pollutant Control. Trans. Tianjin Univ. 2021, 1–17. [Google Scholar] [CrossRef]
- Tran, T.P.N.; Nguyen, T.N.; Taniike, T.; Nishimura, S. Tailoring Graphene Oxide Framework with N-and S-Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems. Catal. Lett. 2020, 151, 247–254. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, S.; Xu, W.; Lv, A.; Wang, Z.; Wang, H.; Liu, G.; Zhang, Y. Fabrication of Composite Material with Pd Nanoparticles and Graphene on Nickel Foam for Its Excellent Electrocatalytic Performance. Electrocatalysis 2020, 11, 522–535. [Google Scholar]
- Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778. [Google Scholar] [CrossRef]
- Kole, A.K.; Biswas, S.; Tiwary, C.S.; Kumbhakar, P. A facile synthesis of graphene oxide–ZnS/ZnO nanocomposites and observations of thermal quenching of visible photoluminescence emission and nonlinear optical properties. J. Lumin. 2016, 179, 211–221. [Google Scholar] [CrossRef]
- Jayakumar, A.; Vedhaiyan, R.K. Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: Its antibacterial and antioxidant activities. Korean J. Chem. Eng. 2019, 36, 1869–1881. [Google Scholar] [CrossRef]
- Mori, K.; Kumami, A.; Tomonari, M.; Yamashita, H. A pH-Induced Size Controlled Deposition of Colloidal Ag Nanoparticles on Alumina Support for Catalytic Application. J. Phys. Chem. C 2009, 113, 16850–16854. [Google Scholar]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Zou, P.; Zhang, P.; Zhang, M.; Mu, J.; Guo, Z.; Li, X.; Wang, C.; Liu, Y. In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chem. Commun. 2011, 47, 3906–3908. [Google Scholar] [CrossRef]
- Jin, Z.; Xiao, M.; Bao, Z.; Wang, P.; Wang, J. A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 6406–6410. [Google Scholar] [CrossRef] [PubMed]
- Shargh, A.Y.; Sayadi, M.H.; Heidari, A. Green Biosynthesis of Palladium Oxide Nanoparticles Using Dictyota indica Seaweed and its application for adsorption. J. Water Environ. Nanotechnol. 2018, 3, 337–347. [Google Scholar]
- Mahdavi, H.; Rezaei, M.; Ahmadian-Alam, L.; Amini, M.M. A novel ternary Pd-GO/N-doped TiO2 hierarchical visible-light sensitive photocatalyst for nanocomposite membrane. Korean J. Chem. Eng. 2020, 37, 946–954. [Google Scholar] [CrossRef]
- Bhuyan, D.; Saikia, M.; Saikia, L. Magnetically recoverable Fe3O4@SBA-15: An improved catalyst for three component coupling reaction of aldehyde, amine and alkyne. Catal. Commun. 2014, 58, 158–163. [Google Scholar] [CrossRef]
- Feng, X.; Yan, M.; Zhang, T.; Liu, Y.; Bao, M. Preparation and application of SBA-15-supported palladium catalyst for Suzuki reaction in supercritical carbon dioxide. Green Chem. 2010, 12, 1758–1766. [Google Scholar] [CrossRef]
- Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 2016, 21, 369. [Google Scholar] [CrossRef]
- Ju, K.S.; Parales, R.E. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol. Mol. Biol. Rev. 2010, 74, 250–272. [Google Scholar] [CrossRef]
- Tomei, M.C.; Annesini, M.C.; Rita, S.; Daugulis, A.J. Two-Phase Partitioning Bioreactors Operating with Polymers Applied to the Removal of Substituted Phenols. Environ. Sci. Technol. 2010, 44, 7254–7259. [Google Scholar]
- Yi, S.; Zhuang, W.Q.; Wu, B.; Tay, S.T.L.; Tay, J.H. Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor. Environ. Sci. Technol. 2006, 40, 2396–2401. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef] [PubMed]
- Podeh, M.R.H.; Bhattacharya, S.K.; Qu, M. Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res. 1995, 29, 391–399. [Google Scholar] [CrossRef]
- Sarkar, S.; Sinha, A.K.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, T. Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material. J. Phys. Chem. C 2011, 115, 1659–1673. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Zhou, J.C.; Soto, C.M.; Chen, M.S.; Bruckman, M.A.; Moore, M.H.; Barry, E.; Ratna, B.R.; Pehrsson, P.E.; Spies, B.R.; Confer, T.S. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J. Nanobiotechnol. 2012, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Kwan, Y.C.G.; Ng, G.M.; Huan, C.H.A. Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 2015, 590, 40–48. [Google Scholar] [CrossRef]
- Jiang, F.; Li, R.; Cai, J.; Xu, W.; Cao, A.; Chen, D.; Zhang, X.; Wang, C.; Shu, C. Ultrasmall Pd/Au bimetallic nanocrystal embedded in hydrogen-bonded supramolecular structures: Facile synthesis and catalytic activities in the reduction of 4-niteophenol. J. Mater. Chem. A 2015, 3, 19433–19438. [Google Scholar] [CrossRef]
- Xu, R.; Bi, H.; He, G.; Zhu, J.; Chen, H. Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol. Mater. Res. Bull. 2014, 57, 190–196. [Google Scholar] [CrossRef]
- Kim, Y.; Ma, R.; Reddy, D.A.; Kim, T.K. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl. Surf. Sci. 2015, 357, 2112–2120. [Google Scholar] [CrossRef]
- Zhang, P.; Li, R.; Huang, Y.; Chen, Q. A novel approach for the in situ synthesis of Pt-Pd nanoalloys supported on Fe3O4@C core-shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl. Mater. Interfaces 2014, 6, 2671–2678. [Google Scholar] [CrossRef]
Catalyst | [Dye] (mM) | [NaBH4] mM | k (×10−2 s−1) | References |
---|---|---|---|---|
Pd-Au/MCA | [4NP]0.54 | 47.1 | 0.47 | [27] |
Cu-Fe2O3/RGO | [4NP]10 | 1.85 | 0.11 | [28] |
Pd@C | [Nitrobenzene]0.4 | 200 | 0.013 | [29] |
Pt-Pd supported on Fe3O4@C | [4NP]30 | 300 | 0.0023 | [30] |
RGO -PN100 | [4NP]2 | 500 | 0.104 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallikarjuna, K.; Reddy, L.V.; Al-Rasheed, S.; Mohammed, A.; Gedi, S.; Kim, W.K. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals 2021, 11, 134. https://doi.org/10.3390/cryst11020134
Mallikarjuna K, Reddy LV, Al-Rasheed S, Mohammed A, Gedi S, Kim WK. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals. 2021; 11(2):134. https://doi.org/10.3390/cryst11020134
Chicago/Turabian StyleMallikarjuna, Koduru, Lebaka Veeranjaneya Reddy, Sarah Al-Rasheed, Arifullah Mohammed, Sreedevi Gedi, and Woo Kyoung Kim. 2021. "Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity" Crystals 11, no. 2: 134. https://doi.org/10.3390/cryst11020134
APA StyleMallikarjuna, K., Reddy, L. V., Al-Rasheed, S., Mohammed, A., Gedi, S., & Kim, W. K. (2021). Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals, 11(2), 134. https://doi.org/10.3390/cryst11020134