Time-Resolved and Temperature-Dependent Fractional Amplitude Contributions to the Broadband Emission of CdSe Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, Q.; Hayes, A.; Jung, S.; Wang, A.; Cho, H.; Kim, W.-J.; Abdel-Fattah, M.; Tabibi, B.; Seo, J. Plasmon-Coupled CdSe/ZnS and CdTe/CdS/ZnS Coreshells for Hybrid Light Emitting Devices. J. Nanosci. Nanotechnol. 2016, 16, 1942–1944. [Google Scholar] [CrossRef]
- Khan, S.A.; Smith, G.T.; Seo, F.; Ellerbee, A.K. Label-Free and Non-Contact Optical Biosensing of Glucose with Quantum Dots. Biosens. Bioelectron. 2015, 64, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, J.; Ramdon, R.; Pyo, H.-B.; Song, K.; Kang, B.H. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection. J. Nanomater. 2012, 2012, 1–9. [Google Scholar] [CrossRef][Green Version]
- Seo, J.; Fudala, R.; Kim, W.-J.; Rich, R.; Tabibi, B.; Cho, H.; Gryczynski, Z.; Gryczynski, I.; Yu, W. Hybrid Optical Materials of Plasmon-Coupled CdSe/ZnS Coreshells for Photonic Applications. Opt. Mater. Express 2012, 2, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Mordant, D.J.; Al-Abboud, I.; Muyo, G.; Gorman, A.; Sallam, A.; Ritchie, P.; Harvey, A.R.; McNaught, A.I. Spectral Imaging of the Retina. EYE 2011, 25, 309–320. [Google Scholar] [CrossRef][Green Version]
- Wang, X.-D.; Wolfbeis, O.S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lehner, P.; Staudinger, C.; Borisov, S.M.; Klimant, I. Ultra-Sensitive Optical Oxygen Sensors for Characterization of Nearly Anoxic Systems. Nat. Commun. 2014, 5, 4460. [Google Scholar] [CrossRef][Green Version]
- Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141–153. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Xue, J.; Holloway, P.H. Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures. Nat. Photonics 2011, 5, 543–548. [Google Scholar] [CrossRef]
- Nozik, A.J. Quantum Dot Solar Cells. Phys. E Low Dimens. Syst. Nanostruct. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Kang, T.; Um, K.; Park, J.; Chang, H.; Lee, D.C.; Kim, C.-K.; Lee, K. Minimizing the Fluorescence Quenching Caused by Uncontrolled Aggregation of CdSe/CdS Core/Shell Quantum Dots for Biosensor Applications. Sens. Actuators B Chem. 2016, 222, 871–878. [Google Scholar] [CrossRef]
- Wu, P.; Yan, X.-P. Doped Quantum Dots for Chemo/Biosensing and Bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape Control of CdSe Nanocrystals. Nature 2000, 404, 59–61. [Google Scholar] [CrossRef]
- Bawendi, M.G.; Carroll, P.J.; Wilson, W.L.; Brus, L.E. Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States. J. Chem. Phys. 1992, 96, 946–954. [Google Scholar] [CrossRef]
- Murphy, C.J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 2002, 74, 520A–526A. [Google Scholar] [CrossRef][Green Version]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Surface-Related Emission in Highly Luminescent CdSe Quantum Dots. Nano Lett. 2003, 3, 1103–1106. [Google Scholar] [CrossRef]
- Sowers, K.L.; Hou, Z.; Peterson, J.J.; Swartz, B.; Pal, S.; Prezhdo, O.; Krauss, T.D. Photophysical Properties of CdSe/CdS Core/Shell Quantum Dots with Tunable Surface Composition. Chem. Phys. 2016, 471, 24–31. [Google Scholar] [CrossRef]
- Seo, J.; Raut, S.; Abdel-Fattah, M.; Rice, Q.; Tabibi, B.; Rich, R.; Fudala, R.; Gryczynski, I.; Gryczynski, Z.; Kim, W.-J.; et al. Time-Resolved and Temperature-Dependent Photoluminescence of Ternary and Quaternary Nanocrystals of CuInS2 with ZnS Capping and Cation Exchange. J. Appl. Phys. 2013, 114, 094310. [Google Scholar] [CrossRef]
- Rice, Q.; Raut, S.; Chib, R.; Gryczynski, Z.; Gryczynski, I.; Zhang, W.; Zhong, X.; Abdel-Fattah, M.; Tabibi, B.; Seo, J. Fractional Contributions of Defect-Originated Photoluminescence from CuInS2/ZnS Coreshells for Hybrid White LEDs. J. Nanomater. 2014, 2014, 1–7. [Google Scholar] [CrossRef][Green Version]
- Sillen, A.; Engelborghs, Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475–486. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe and CdS Nanocrystals. Chem. Mater. 2004, 16, 560. [Google Scholar] [CrossRef][Green Version]
- O’Donnell, K.P.; Chen, X. Temperature Dependence of Semiconductor Band Gaps. Appl. Phys. Lett. 1991, 58, 2924–2926. [Google Scholar] [CrossRef][Green Version]
- Shibata, H. Negative Thermal Quenching Curves in Photoluminescence of Solids. Jpn. J. Appl. Phys. 1998, 37, 550–553. [Google Scholar] [CrossRef]
- Jones, M.; Nedeljkovic, J.; Ellingson, R.J.; Nozik, A.J.; Rumbles, G. Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions. J. Phys. Chem. B 2003, 107, 11346–11352. [Google Scholar] [CrossRef]
- Nirmal, M.; Norris, D.; Kuno, M.; Bawendi, M.; Efros, A.L.; Rosen, M. Observation of the “Dark Exciton” in CdSe Quantum Dots. Phys. Rev. Lett. 1995, 75, 3728–3731. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rice, Q.; Raut, S.; Burney, K.; Gryczynski, Z.; Gryczynski, I.; Yu, W.W.; Tabibi, B.; Seo, J. Time-Resolved and Temperature-Dependent Fractional Amplitude Contributions to the Broadband Emission of CdSe Quantum Dots. Crystals 2021, 11, 1284. https://doi.org/10.3390/cryst11111284
Rice Q, Raut S, Burney K, Gryczynski Z, Gryczynski I, Yu WW, Tabibi B, Seo J. Time-Resolved and Temperature-Dependent Fractional Amplitude Contributions to the Broadband Emission of CdSe Quantum Dots. Crystals. 2021; 11(11):1284. https://doi.org/10.3390/cryst11111284
Chicago/Turabian StyleRice, Quinton, Sangram Raut, Kyle Burney, Zygmunt Gryczynski, Ignacy Gryczynski, William W. Yu, Bagher Tabibi, and Jaetae Seo. 2021. "Time-Resolved and Temperature-Dependent Fractional Amplitude Contributions to the Broadband Emission of CdSe Quantum Dots" Crystals 11, no. 11: 1284. https://doi.org/10.3390/cryst11111284