Single-Longitudinal-Mode Laser at 1123 nm Based on a Twisted-Mode Cavity
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sane, S.S.; Bennetts, S.; Debs, J.E.; Kuhn, C.C.N.; McDonald, G.D.; Altin, P.A.; Close, J.D.; Robins, N.P. 11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium. Opt. Express 2012, 20, 8915–8919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, V.; Kracht, D.; Neumann, J.; Wessels, P. Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection. In Fiber Lasers Ix: Technology, Systems, and Applications; SPIE 8237; SPIE: San Francisco, CA, USA, 2012. [Google Scholar]
- Wu, T.; Peng, X.; Gong, W.; Zhan, Y.Z.; Lin, Z.S.; Luo, B.; Guo, H. Observation and optimization of He−4 atomic polarization spectroscopy. Opt. Lett. 2013, 38, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Canat, G.; Augere, B.; Besson, C.; Dolfi-Bouteyre, A.; Durecu, A.; Goular, D.; Gouet, J.L.; Lombard, L.; Planchat, C.; Valla, M. High peak power single-frequency MOPFA for lidar applications. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Zhang, Q.; Hou, Y.B.; Wang, X.; Song, W.H.; Chen, X.; Bin, W.; Li, J.; Zhao, C.N.; Wang, P. 5 W ultra-low-noise 2 μm single-frequency fiber laser for next-generation gravitational wave detectors. Opt. Lett. 2020, 45, 4911–4914. [Google Scholar] [CrossRef]
- Wang, K.X.; Gao, C.Q.; Lin, Z.F.; Wang, Q.; Gao, M.W.; Huang, S.; Chen, C.Y. 1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser. Opt. Express 2020, 28, 14694–14704. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, V.; Tomita, H.; Kotaro, K.; Koya, H.; Studer, D.; Terabayashi, R.; Weber, F.; Wendt, K.; Nishizawa, N.; Iguchi, T. A direct diode pumped Ti:sapphire laser with single-frequency operation for high resolution spectroscopy. Hyperfine Interact 2020, 241, 32. [Google Scholar] [CrossRef]
- Evtuhov, V.; Siegman, A.E. A Twisted-Mode Technique for Obtaining Axially Uniform Energy Density in Laser Cavity. Appl. Opt. 1965, 4, 142–143. [Google Scholar] [CrossRef]
- Wu, E.; Pan, H.; Zhang, S.; Zeng, H. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal. Appl. Phys. B-Lasers O 2005, 80, 459–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.; Gao, M.; Lin, Z.; Wang, R. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique. Laser Phys. Lett. 2010, 7, 17–20. [Google Scholar] [CrossRef]
- Kane, T.J.; Byer, R.L. Monolithic, Unidirectional Single-Mode Nd:YAG Ring Laser. Opt. Lett. 1985, 10, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, C.Q.; Gao, M.W.; Li, Y. Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm. Opt. Express 2013, 21, 9541–9546. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Ju, Y.L.; Wang, Z.G.; Wang, Q.; Song, C.W.; Wang, Y.Z. Diode-pumped single frequency Tm:YAG laser at room temperature. Laser Phys. Lett. 2008, 5, 793–796. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, C.; Gao, M.; Zhang, Y.; Weber, H. Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters. Appl. Phys. B Lasers O 2009, 94, 81–84. [Google Scholar] [CrossRef]
- Pedersen, C.; Hansen, P.L.; Skettrup, T.; Buchhave, P. Diode-Pumped Single-Frequency Nd:YVO4 Laser with a Set of Coupled Resonators. Opt. Lett. 1995, 20, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Ju, Y.L.; Wang, Z.G.; Li, Y.F.; Ma, H.Y.; Wang, Y.Z. Lasing characteristics of a CWTm: LuAG laser with a set of double cavity. Laser Phys. Lett. 2008, 5, 510–513. [Google Scholar] [CrossRef]
- Paschotta, R.; Moore, N.; Clarkson, W.A.; Tropper, A.C.; Hanna, D.C.; Maze, G. 230 mW of blue light from a thulium-doped upconversion fiber laser. IEEE J. Sel. Top Quant. 1997, 3, 1100–1102. [Google Scholar] [CrossRef] [Green Version]
- Telford, W.; Murga, M.; Hawley, T.; Hawley, R.; Packard, B.; Komoriya, A.; Haas, F.; Hubert, C. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Cytom. Part A 2005, 68, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Dai, X.J.; Zhang, L.; Sun, H.X.; Wu, X.D. A Continuous-Wave Medical Yellow Laser at 561 nm. In Proceedings of the Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, Munich, Germany, 12–16 May 2013. [Google Scholar]
- Moore, N.; Clarkson, W.A.; Hanna, D.C.; Lehmann, S.; Bosenberg, J. Efficient operation of a diode-bar-pumped Nd:YAG laser on the low-gain 1123-nm line. Appl. Opt. 1999, 38, 5761–5764. [Google Scholar] [CrossRef] [PubMed]
- Zang, E.J.; Cao, J.P.; Li, Y.; Yang, T.; Hong, D.M. Single-frequency 1.25 W monolithic lasers at 1123 nm. Opt. Lett. 2007, 32, 250–252. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.H.; Zhang, H.N.; Ma, B.M.; Wang, Q.P. Diode-Pumped Passively Q-Switched Nd:YAG Ceramic Laser at 1123 nm with a Cr4+:YAG Saturable Absorber. Appl. Phys. Express 2011, 4, 092702. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lan, Y.P. Diode-pumped passively Q-switched Nd:YAG laser at 1123 nm. Appl. Phys. B Lasers O 2004, 79, 29–31. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liang, H.C.; Su, K.W.; Lai, H.C.; Chen, Y.F.; Huang, K.F. InGaAs quantum-well saturable absorbers for a diode-pumped passively Q-switched Nd:YAG laser at 1123 nm. Appl. Opt. 2007, 46, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Raikkonen, E.; Kimmelma, O.; Kaivola, M.; Buchter, S.C. Passively Q-switched Nd:YAG/ICTA laser at 561 nm. Opt. Commun. 2008, 281, 4088–4091. [Google Scholar] [CrossRef]
- Singh, S.; Smith, R.G.; Vanuiter, L. Stimulated-Emission Cross-Section and Fluorescent Quantum Efficiency of Nd3+ in Yttrium Aluminum Garnet at Room-Temperature. Phys. Rev. B 1974, 10, 2566–2572. [Google Scholar] [CrossRef]
- Gao, C.; Wang, R.; Lin, Z.; Gao, M.; Zhu, L.; Zheng, Y.; Zhang, Y. 2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity. Appl. Phys. B 2012, 107, 67–70. [Google Scholar] [CrossRef]
- Marling, J. 1.05-1.44 Mu-M Tunability and Performance of CW Nd3+-YAG Laser. IEEE J. Quant. Elect. 1978, 14, 56–62. [Google Scholar] [CrossRef]
- Barmenkov, Y.O.; Zalvidea, D.; Torres-Peiro, S.; Cruz, J.L.; Andres, M.V. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 2006, 14, 6394–6399. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, S.; Cong, Z.; Men, S.; Guan, C.; Xie, Y.; Liu, Z. Single-Longitudinal-Mode Laser at 1123 nm Based on a Twisted-Mode Cavity. Crystals 2021, 11, 58. https://doi.org/10.3390/cryst11010058
Liu Y, Zhang S, Cong Z, Men S, Guan C, Xie Y, Liu Z. Single-Longitudinal-Mode Laser at 1123 nm Based on a Twisted-Mode Cavity. Crystals. 2021; 11(1):58. https://doi.org/10.3390/cryst11010058
Chicago/Turabian StyleLiu, Yang, Sasa Zhang, Zhenhua Cong, Shaojie Men, Chen Guan, Yongyao Xie, and Zhaojun Liu. 2021. "Single-Longitudinal-Mode Laser at 1123 nm Based on a Twisted-Mode Cavity" Crystals 11, no. 1: 58. https://doi.org/10.3390/cryst11010058
APA StyleLiu, Y., Zhang, S., Cong, Z., Men, S., Guan, C., Xie, Y., & Liu, Z. (2021). Single-Longitudinal-Mode Laser at 1123 nm Based on a Twisted-Mode Cavity. Crystals, 11(1), 58. https://doi.org/10.3390/cryst11010058