Revisiting the Zintl‒Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Details
2.2. Electronic Structure Computations, Chemical Bonding and Population Analyses
3. Materials and Methods
3.1. Syntheses
3.2. X-Ray Diffractions Studies and Crystal Structure Determinations
3.3. Computational Details
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Curtarolo, S.; Hart, G.L.W.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nature Mater. 2013, 12, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Nesper, R. Bonding Patterns in Intermetallic Compounds. Angew. Chem. Int. Ed. 1991, 30, 789–817. [Google Scholar] [CrossRef]
- Miller, G.J. The “Coloring Problem” in Solids: How It Affects Structure, Composition and Properties. Eur. J. Inorg. Chem. 1998, 1998, 523–536. [Google Scholar] [CrossRef]
- Gladisch, F.C.; Steinberg, S. Revealing Tendencies in the Electronic Structures of Polar Intermetallic Compounds. Crystals 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Fries, K.S.; Steinberg, S. Fermi-Level Characteristics of Potential Chalcogenide Superconductors. Chem. Mater. 2018, 30, 2251–2261. [Google Scholar] [CrossRef]
- Simons, J.; Steinberg, S. Identifying the Origins of Vacancies in the Crystal Structures of Rock Salt-type Chalcogenide Superconductors. ACS Omega 2019, 4, 15721–15728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, G.A.; Dronskowski, R. The Orbital Origins of Magnetism: From Atoms to Molecules to Ferromagnetic Alloys. Angew. Chem. Int. Ed. 2000, 39, 1560–1585. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nature Mater. 2008, 7, 653–658. [Google Scholar] [CrossRef]
- Cheng, Y.; Cojocaru-Mirédin, O.; Keutgen, J.; Yu, Y.; Küpers, M.; Schumacher, M.; Golub, P.; Raty, J.-Y.; Dronskowski, R.; Wuttig, M. Understanding the Structure and Properties of Sesqui-Chalcogenides (i.e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Adv. Mater. 2019, 31, 1904316. [Google Scholar] [CrossRef] [Green Version]
- Toberer, E.S.; Snyder, G.J. Complex thermoelectric materials. Nature Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Raoux, S.; Welnic, W.; Ielmini, D. Phase Change Materials and Their Applications to Nonvolatile Memories. Chem. Rev. 2010, 110, 240–267. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Papoian, G.A.; Hoffmann, R. Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl-Klemm Concept to Nonclassical Electron-Rich Networks. Angew. Chem. Int. Ed. 2000, 39, 2408–2448. [Google Scholar] [CrossRef]
- Gladisch, F.C.; Steinberg, S. Revealing the Nature of Bonding in Rare-Earth Transition-Metal Tellurides by Means of Methodes Based on First Principles. Eur. J. Inorg. Chem. 2017, 2017, 3395–3400. [Google Scholar] [CrossRef]
- Göbgen, K.C.; Gladisch, F.C.; Steinberg, S. The Mineral Stützite: A Zintl-Phase or Polar Intermetallic? A Case Study Using Experimental and Quantum-Chemical Techniques. Inorg. Chem. 2018, 57, 412–421. [Google Scholar] [CrossRef]
- Göbgen, K.C.; Fries, K.S.; Gladisch, F.C.; Dronskowski, R.; Steinberg, S. Revealing the Nature of Chemical Bonding in an ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Telluride. Inorganics 2019, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Corbett, J.D. Exploratory Synthesis: The Fascinating and Diverse Chemistry of Polar Intermetallic Phases. Inorg. Chem. 2010, 49, 13–28. [Google Scholar] [CrossRef]
- Lin, Q.; Miller, G.J. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization. Acc. Chem. Res. 2018, 51, 49–58. [Google Scholar] [CrossRef]
- Ertural, C.; Steinberg, S.; Dronskowski, R. Development of a robust tool to extract Mulliken and Löwdin charges from plane waves and its application to solid-state materials. RSC Adv. 2019, 9, 29821–29830. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, K.; Ibers, J.A. Rare-Earth Transition-Metal Chalcogenides. Chem. Rev. 2002, 102, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, T.H.; Steinfink, H.; Weiss, E.J. The Phase Equilibria and Crystal Chemistry of the Rare Earth-Group VI Systems. IV. Lanthanum-Tellurium. Inorg. Chem. 1965, 4, 1154–1157. [Google Scholar] [CrossRef]
- Wang, R.; Steinfink, H.; Bradley, W.F. The Crystal Structure of Lanthanum Telluride and of Tellurium-Deficient Neodymium Telluride. Inorg. Chem. 1966, 5, 142–145. [Google Scholar] [CrossRef]
- van der Lee, A.; de Boer, J.L. Redetermination of the structure of hessite, Ag2Te-III. Acta Crystallogr. Sect. C Struct. Chem. 1993, 49, 1444–1446. [Google Scholar] [CrossRef]
- Li, J.; Guo, H.-Y.; Zhang, X.; Kanatzidis, M.G. CsAg5Te3: A new metal-rich telluride with a unique tunnel structure. J. Alloys Compd. 1995, 218, 1–4. [Google Scholar] [CrossRef]
- Stöwe, K. Crystal structure and magnetic properties of CeTe2. J. Alloys Compd. 2000, 307, 101–110. [Google Scholar] [CrossRef]
- Meng, C.-Y.; Chen, H.; Wang, P. Syntheses, Structures, and Physical Properties of CsRE2Ag3Te5 (RE = Pr, Nd, Sm, Gd-Er) and RbRE2Ag3Te5 (RE = Sm, Gd-Dy). Inorg. Chem. 2014, 53, 6893–6903. [Google Scholar] [CrossRef]
- Provino, A.; Steinberg, S.; Smetana, V.; Paramanik, U.; Manfrinetti, P.; Dhar, S.K.; Mudring, A.-V. Gold in the Layered Structures of R3Au7Sn3: From Relativity to Versatility. Cryst. Growth Des. 2016, 16, 5657–5668. [Google Scholar] [CrossRef]
- Steinberg, S.; Dronskowski, R. The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals 2018, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, S.; Smetana, V.; Mudring, A.-V. Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6. Cryst. Growth Des. 2017, 17, 693–700. [Google Scholar] [CrossRef]
- Jansen, M. Homoatomic d10-d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angew. Chem. Int. Ed. 1987, 26, 1098–1110. [Google Scholar] [CrossRef]
- Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597–636. [Google Scholar] [CrossRef] [PubMed]
- Janka, O.; Pöttgen, R. Reactive Fluxes. In Handbook of Solid State Chemistry; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- WinXPow; Version 2.23; STOE & Cie GmbH: Darmstadt, Germany, 2008.
- Match! Vers. 3.8.0.137; Crystal Impact GbR: Bonn, Germany, 2019.
- SAINT+ and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009.
- XPREP; Version 6.03; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Marsman, M.; Furthmüller, J. Vienna Ab-Initio Simulation Package VASP: The Guide; Computational Materials Physics, Faculty of Physics, Universität Wien: Vienna, Austria, 2014. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter Mater. Phys. 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef] [PubMed]
- Dronskowski, R.; Blöchl, P.E. Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids Based on Density-Functional Calculations. J. Phys. Chem. 1993, 97, 8617–8624. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréff, A.L.; Dronskowski, R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemcial-Bonding Analysis in Solids. J. Comput. Chem. 2013, 34, 2557–2567. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
Formula | RbHo2Ag3Te5 | RbEr2Ag3Te5 | CsLa2Ag3Te5 | CsCe2Ag3Te5 |
---|---|---|---|---|
form wt. | 1376.94 | 1381.60 | 1372.34 | 1374.76 |
space group | Cmcm (no. 63) | |||
a (Å) | 4.517(2) | 4.493(1) | 4.662(7) | 4.647(1) |
b (Å) | 16.096(6) | 16.069(4) | 16.21(2) | 16.223(4) |
c (Å) | 18.256(7) | 18.220(4) | 19.00(3) | 18.921(5) |
volume (Å3) | 1327.4(9) | 1315.5(5) | 1436(4) | 1426.5(6) |
Z | 4 | |||
density (calc.), g/cm3 | 6.890 | 6.976 | 6.348 | 6.401 |
μ (mm−1) | 30.490 | 31.494 | 22.247 | 22.785 |
F (000) | 2288 | 2296 | 2280 | 2288 |
θ range (°) | 2.231−26.563 | 2.236−25.216 | 2.144−25.352 | 2.153−31.006 |
index ranges | −5 ≤ h ≤ 5 −20 ≤ k ≤ 19 −19 ≤ l ≤ 22 | −5 ≤ h ≤ 5 −18 ≤ k ≤ 18 −21 ≤ l ≤ 13 | −4 ≤ h ≤ 5 −17 ≤ k ≤ 19 −22 ≤ l ≤ 22 | −6 ≤ h ≤ 6 −15 ≤ k ≤ 23 −26 ≤ l ≤ 27 |
reflections collected | 4259 | 3070 | 4046 | 5769 |
independent reflections | 809 | 701 | 769 | 1236 |
refinement method | full-matrix least-squares on F2 | |||
data/restraints/parameters | 809/0/37 | 701/0/37 | 769/0/37 | 1236/0/37 |
goodness-of-fit on F2 | 1.16 | 1.13 | 0.89 | 1.06 |
final R indices [I > 2σ(I)] | R1 = 0.046; wR2 = 0.099 | R1 = 0.057; wR2 = 0.144 | R1 = 0.056; wR2 = 0.129 | R1 = 0.026; wR2 = 0.055 |
R indices (all data) | R1 = 0.056; wR2 = 0.102 | R1 = 0.061; wR2 = 0.146 | R1 = 0.094; wR2 = 0.145 | R1 = 0.038; wR2 = 0.056 |
Rint | 0.073 | 0.074 | 0.173 | 0.042 |
largest difference peak and hole, e−/Å3 | 2.18 and −6.96 | 4.02 and −5.74 | 1.91 and −3.78 | 1.54 and −1.90 |
Atom | Position | x | y | z | Ueq, Å2 |
---|---|---|---|---|---|
RbHo2Ag3Te5 | |||||
Ho1 | 8f | 0 | 0.1915(1) | 0.4050(1) | 0.0148(3) |
Te2 | 8f | ½ | 0.0632(1) | 0.3786(1) | 0.0165(3) |
Te3 | 8f | 0 | 0.1768(1) | 0.5721(1) | 0.0142(3) |
Te4 | 4c | 0 | 0.2616(1) | ¼ | 0.0161(4) |
Ag5 | 8f | ½ | 0.0835(1) | 0.5330(1) | 0.0263(4) |
Ag6 | 4c | ½ | 0.1638(1) | ¼ | 0.0274(5) |
Rb7 | 4c | 0 | −0.0572(1) | ¼ | 0.0262(6) |
RbEr2Ag3Te5 | |||||
Er1 | 8f | 0 | 0.1919(1) | 0.4049(1) | 0.0150(4) |
Te2 | 8f | ½ | 0.0640(1) | 0.3789(1) | 0.0162(5) |
Te3 | 8f | 0 | 0.1772(1) | 0.5718(1) | 0.0142(5) |
Te4 | 4c | 0 | 0.2620(1) | ¼ | 0.0149(5) |
Ag5 | 8f | ½ | 0.0828(1) | 0.5338(1) | 0.0267(6) |
Ag6 | 4c | ½ | 0.1638(2) | ¼ | 0.0261(7) |
Rb7 | 4c | 0 | −0.0569(2) | ¼ | 0.0267(8) |
CsLa2Ag3Te5 | |||||
La1 | 8f | 0 | 0.1910(1) | 0.4064(1) | 0.0197(5) |
Te2 | 8f | ½ | 0.0582(1) | 0.3798(1) | 0.0214(6) |
Te3 | 8f | 0 | 0.1699(1) | 0.5730(1) | 0.0203(6) |
Te4 | 4c | 0 | 0.2540(2) | ¼ | 0.0222(7) |
Ag5 | 8f | ½ | 0.0860(2) | 0.5289(2) | 0.0302(7) |
Ag6 | 4c | ½ | 0.1598(3) | ¼ | 0.0344(10) |
Cs7 | 4c | 0 | −0.0596(2) | ¼ | 0.0284(8) |
CsCe2Ag3Te5 | |||||
Ce1 | 8f | 0 | 0.1908(1) | 0.4064(1) | 0.0138(1) |
Te2 | 8f | ½ | 0.0591(1) | 0.3801(1) | 0.0150(1) |
Te3 | 8f | 0 | 0.1718(1) | 0.5730(1) | 0.0133(1) |
Te4 | 4c | 0 | 0.2539(1) | ¼ | 0.0156(2) |
Ag5 | 8f | ½ | 0.0860(1) | 0.5296(1) | 0.0241(2) |
Ag6 | 4c | ½ | 0.1597(1) | ¼ | 0.0271(2) |
Cs7 | 4c | 0 | −0.0594(1) | ¼ | 0.0224(2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eickmeier, K.; Fries, K.S.; Gladisch, F.C.; Dronskowski, R.; Steinberg, S. Revisiting the Zintl‒Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides. Crystals 2020, 10, 184. https://doi.org/10.3390/cryst10030184
Eickmeier K, Fries KS, Gladisch FC, Dronskowski R, Steinberg S. Revisiting the Zintl‒Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides. Crystals. 2020; 10(3):184. https://doi.org/10.3390/cryst10030184
Chicago/Turabian StyleEickmeier, Katharina, Kai S. Fries, Fabian C. Gladisch, Richard Dronskowski, and Simon Steinberg. 2020. "Revisiting the Zintl‒Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides" Crystals 10, no. 3: 184. https://doi.org/10.3390/cryst10030184
APA StyleEickmeier, K., Fries, K. S., Gladisch, F. C., Dronskowski, R., & Steinberg, S. (2020). Revisiting the Zintl‒Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides. Crystals, 10(3), 184. https://doi.org/10.3390/cryst10030184