# Quantum Mean-Field Games with the Observations of Counting Type

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Quantum Filtering of Counting Type

## 3. Example of a Quantum Dynamic Two-Player Game

## 4. Controlled Limiting Stochastic Equation

**Theorem**

**1.**

**Proof.**

## 5. Quantum MFG

**Remark 1.**

**Theorem**

**2.**

**Proof.**

## 6. Discussion

## Funding

## Conflicts of Interest

## References

- Kolokoltsov, V.N. Quantum Mean Field Games. arXiv
**2020**, arXiv:2005.02350. [Google Scholar] - Huang, M.; Malhamé, R.; Caines, P. Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst.
**2006**, 6, 221–252. [Google Scholar] - Lasry, J.-M.; Lions, P.-L. Jeux à champ moyen, I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris
**2006**, 343, 619–625. [Google Scholar] [CrossRef] - Bensoussan, A.; Frehse, J.; Yam, P. Mean Field Games and Mean Field Type Control Theory; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Carmona, R.; Delarue, F. Probabilistic Theory of Mean Field Games with Applications, V. I, II. Probability Theory and Stochastic Modelling; Springer: Berlin/Heidelberg, Germany, 2018; Volume 83, p. 84. [Google Scholar]
- Gomes, D.A.; Pimentel, E.A.; Voskanyan, V. Regularity Theory for Mean-Field Game Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kolokoltsov, V.N.; Malafeyev, O.A. Many Agent Games in Socio-Economic Systems: Corruption, Inspection, Coalition Building, Network Growth, Security; Springer Series in Operations Research and Financial Engineering; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Meyer, D.A. Quantum strategies. Phys. Rev. Lett.
**1999**, 82, 1052–1055. [Google Scholar] [CrossRef][Green Version] - Eisert, J.; Wilkens, M.; Lewenstein, M. Quantum Games and Quantum Strategies. Phys. Rev. Lett.
**1999**, 83, 3077–3080. [Google Scholar] [CrossRef][Green Version] - Marinatto, L.; Weber, T. A quantum approach to static games of complete information. Phys. Lett. A
**2000**, 272, 291–303. [Google Scholar] [CrossRef][Green Version] - Khan, F.S.; Solmeyer, N.; Balu, R.; Humble, T. Quantum games: A review of the history, current state, and interpretation. Quantum Inf. Process.
**2018**, 17, 309. [Google Scholar] [CrossRef][Green Version] - Guo, H.; Zhang, J.; Koehler, G.J. A survey of quantum games. Decis. Support Syst.
**2008**, 46, 318–332. [Google Scholar] [CrossRef] - Kolokoltsov, V.N.; Malafeyev, O.A. Understanding Game Theory, 2nd ed.; World Scientific: Singapore, 2019. [Google Scholar]
- Iqbal, A.; Toor, A.H. Equilibria of Replicator Dynamics in Quantum Games. arXiv
**2001**, arXiv:quant-ph/0106135. [Google Scholar] - Iqbal, A.; Toor, A.H. Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A
**2002**, 65, 022306. [Google Scholar] [CrossRef][Green Version] - Iqbal, A.; Toor, A.H. Darwinism in quantum systems? Phys. Lett. A
**2002**, 294, 261–270. [Google Scholar] [CrossRef][Green Version] - Iqbal, A.; Toor, A.H. Quantum cooperative games. Phys. Lett. A
**2002**, 293, 103–108. [Google Scholar] [CrossRef][Green Version] - Du, J.; Li, H.; Xu, X.; Shi, M.; Zhou, X.; Han, R. Nash equilibrium in the Quantum Battle of the Sexes Game. arXiv
**2001**, arXiv:quant-ph/0010050v3. [Google Scholar] - Du, J.; Li, H.; Xu, X.; Zhou, X.; Han, R. Phase-transition-like Behavior of Quantum Games. arXiv
**2003**, arXiv:quant-ph/0111138v4. [Google Scholar] - Du, J.; Li, H.; Xu, X.; Zhou, X.; Han, R. Entanglement Enhanced Multiplayer Quantum Games. Phys. Lett. A
**2002**, 302, 229–233. [Google Scholar] [CrossRef][Green Version] - Li, H.; Du, J.; Massar, S. Continuous variable quantum games. Phys. Lett. A
**2002**, 306, 73–78. [Google Scholar] [CrossRef][Green Version] - Pothos, E.; Busemeyer, J. Can quantum probability provide a new direction for cognitive modeling? Behav. Brain Sci.
**2013**, 36, 255–274. [Google Scholar] [CrossRef][Green Version] - Khrennikov, A.Y. Ubiquitous Quantum Structure: From Psychology to Finance; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Aoki, S.; Ikeda, K. Repeated Quantum Games and Strategic Efficiency. Available online: https://arxiv.org/abs/2005.05588 (accessed on 6 January 2021).
- Ikeda, K. Foundation of quantum optimal transport and applications. Quantum Inf. Process.
**2020**, 19, 25. [Google Scholar] [CrossRef][Green Version] - Aoki, S.; Ikeda, K. Theory of Quantum Games and Quantum Economic Behavior. Available online: https://arxiv.org/abs/2010.14098 (accessed on 6 January 2021).
- Bouten, L.; Handel, R.V. On the separation principle of quantum control. arXiv
**2006**, arXiv:math-ph/0511021v2. [Google Scholar] - Kolokoltsov, V.N. The stochastic Bellman equation as a nonlinear equation in Maslov spaces. Perturbation theory. Dokl. Akad. Nauk
**1992**, 323, 223–228. [Google Scholar] - Belavkin, V.P. Nondemolition measurement and control in quantum dynamical systems. In Information Complexity and Control in Quantum Physics; Diner, S., Lochak, G., Eds.; CISM Courses and Lectures; Springer: Vienna, Austria, 1987; Volume 294, pp. 331–336. [Google Scholar]
- Belavkin, V.P. Nondemolition stochastic calculus in Fock space and nonlinear filtering and control in quantum systems. In Proceedings of the XXIV Karpacz Winter School Stochastic Methods in Mathematics and Physics, Karpacz, Poland, 13–27 January 1988; Guelerak, R., Karwowski, W., Eds.; World Scientific: Singapore, 1988; pp. 310–324. [Google Scholar]
- Belavkin, V.P. Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal.
**1992**, 42, 171–201. [Google Scholar] [CrossRef][Green Version] - Belavkin, V.P.; Kolokoltsov, V.N. Stochastic evolution as interaction representation of a boundary value problem for Dirac type equation. Infin. Dimens. Anal. Probab. Relat. Fields
**2002**, 5, 61–92. [Google Scholar] [CrossRef][Green Version] - Pellegrini, C. Poisson and Diffusion Approximation of Stochastic Schrödinger Equations with Control. Ann. Henri Poincaré
**2009**, 10, 995–1025. [Google Scholar] [CrossRef][Green Version] - Barchielli, A.; Belavkin, V.P. Measurements contunuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen.
**1991**, 24, 1495–1514. [Google Scholar] [CrossRef][Green Version] - Holevo, A.S. Statistical Inference for quantum processes. In Quanum Aspects of Optical Communications; Springer: Berlin, Germany, 1991; Volume 378, pp. 127–137. [Google Scholar]
- Kolokoltsov, V.N. Continuous time random walks modeling of quantum measurement and fractional equations of quantum stochastic filtering and control. arXiv
**2020**, arXiv:2008.07355. [Google Scholar] - Armen, M.A.; Au, J.K.; Stockton, J.K.; Doherty, A.C.; Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett.
**2002**, 89, 133602. [Google Scholar] [CrossRef][Green Version] - Bushev, P.; Rotter, D.; Wilson, A.; Dubin, F.; Becher, C.; Eschner, J.; Blatt, R.; Steixner, V.; Rabl, P.; Zoller, P. Feedback cooling of a singe trapped ion. Phys. Rev. Lett.
**2006**, 96, 043003. [Google Scholar] [CrossRef][Green Version] - Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge Univesity Press: Cambridge, UK, 2010. [Google Scholar]
- Bouten, L.; Handel, R.V.; James, M. An introduction to quantum filtering. SIAM J. Control Optim.
**2007**, 46, 2199–2241. [Google Scholar] [CrossRef] - Pickl, P. A simple derivation of mean-field limits for quantum systems. Lett. Math. Phys.
**2011**, 97, 151–164. [Google Scholar] [CrossRef] - Knowles, A.; Pickl, P. Mean-field dynamics: Singular potentials and rate of convergence. Commun. Math. Phys.
**2010**, 298, 101–138. [Google Scholar] [CrossRef][Green Version] - Averboukh, Y. Viability analysis of the first-order mean field games. ESAIM Control Optim. Calc. Var.
**2020**, 26, 33. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kolokoltsov, V.N. Quantum Mean-Field Games with the Observations of Counting Type. *Games* **2021**, *12*, 7.
https://doi.org/10.3390/g12010007

**AMA Style**

Kolokoltsov VN. Quantum Mean-Field Games with the Observations of Counting Type. *Games*. 2021; 12(1):7.
https://doi.org/10.3390/g12010007

**Chicago/Turabian Style**

Kolokoltsov, Vassili N. 2021. "Quantum Mean-Field Games with the Observations of Counting Type" *Games* 12, no. 1: 7.
https://doi.org/10.3390/g12010007