Zebrafish Sensitivity to Botulinum Neurotoxins
Abstract
:1. Introduction
2. Results
2.1. BoNT/A 96 h Median Immobilizing Dose
2.2. BoNT/C 96 h Median Immobilizing Dose
2.3. BoNT/E 96 h Median Immobilizing Dose
2.4. BoNT/F 96 h Median Immobilizing Dose
3. Discussion
4. Conclusions
5. Experimental Section
5.1. Experimental Design
5.2. Zebrafish
5.3. BoNTs Source and Handling
5.4. Statistical Methods
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shukla, H.D.; Sharma, S.K. Clostridium botulinum: A bug with beauty and weapon. Crit. Rev. Microbiol. 2005, 31, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, J.M.; Smith, L.A. Botulinum neurotoxin vaccines: Past history and recent developments. Hum. Vaccines 2009, 5, 794–805. [Google Scholar] [CrossRef]
- Gaunt, P.S.; Kalb, S.R.; Barr, J.R. Detection of botulinum type E toxin in channel catfish with visceral toxicosis syndrome using catfish bioassay and endopep mass spectrometry. J. Vet. Diagn. Invest. 2007, 19, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Yule, A.M.; Barker, I.K.; Austin, J.W.; Moccia, R.D. Toxicity of Clostridium botulinum type e neurotoxin to great lakes fish: Implications for avian botulism. J. Wildl. Dis. 2006, 42, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Gessler, F.; Hampe, K.; Bohnel, H. Sensitive detection of botulinum neurotoxin types C and D with an immunoaffinity chromatographic column test. Appl. Env. Microbiol. 2005, 71, 7897–7903. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.T.; Hibbs, R.G., Jr.; Darwish, A.; Mishu, B.; Corwin, A.L.; Rakha, M.; Hatheway, C.L.; El Sharkawy, S.; El-Rahim, S.A.; Al-Hamd, M.F.; et al. A massive outbreak of type E botulism associated with traditional salted fish in Cairo. J. Infect. Dis. 1993, 167, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Schoenbaum, M.A.; Hall, S.M.; Glock, R.D.; Grant, K.; Jenny, A.L.; Schiefer, T.J.; Sciglibaglio, P.; Whitlock, R.H. An outbreak of type C botulism in 12 horses and a mule. J. Am. Vet. Med. Assoc. 2000, 217, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Chatla, K.; Gaunt, P.S.; Hanson, L.; Gao, D.X.; Wills, R. Determination of the median lethal dose of botulinum serotype E in channel catfish fingerlings. J. Aquat. Anim. Health 2012, 24, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Bitz, S. The botulinum neurotoxin ld50 test—Problems and solutions. Altex 2010, 27, 114–116. [Google Scholar] [PubMed]
- Lanis, J.M.; Barua, S.; Ballard, J.D. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog. 2010, 6, e1001061. [Google Scholar] [CrossRef] [PubMed]
- Meeker, N.D.; Trede, N.S. Immunology and zebrafish: Spawning new models of human disease. Dev. Comp. Immunol. 2008, 32, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Beliaeva, N.F.; Kashirtseva, V.N.; Medvedeva, N.V.; Khudoklinova, I.; Ipatova, O.M.; Archakov, A.I. Zebrafish as a model organism for biomedical studies. Biomed. Khim. 2010, 56, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Dahm, R.; Geisler, R. Learning from small fry: The zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol. (NY) 2006, 8, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Trede, N.S.; Langenau, D.M.; Traver, D.; Look, A.T.; Zon, L.I. The use of zebrafish to understand immunity. Immunity 2004, 20, 367–379. [Google Scholar] [CrossRef]
- Petrie-Hanson, L.; Romano, C.L.; Mackey, R.B.; Khosravi, P.; Hohn, C.M.; Boyle, C.R. Evaluation of zebrafish Danio rerio as a model for enteric septicemia of catfish (ESC). J. Aquat. Anim. Health 2007, 19, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Saslowsky, D.E.; Cho, J.A.; Chinnapen, H.; Massol, R.H.; Chinnapen, D.J.; Wagner, J.S.; de Luca, H.E.; Kam, W.; Paw, B.H.; Lencer, W.I. Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not derlin-1 or -2. J. Clin. Invest. 2010, 120, 4399–4409. [Google Scholar] [CrossRef] [PubMed]
- Chatla, K.; Gaunt, P.; Petrie-Hanson, L.; Hohn, C.; Ford, L.; Hanson, L. Zebrafish (Danio rerio) bioassay for visceral toxicosis of catfish and botulinum neurotoxin serotype E. J. Vet. Diagn. Invest. 2014, 26, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.M. Bacterial toxins: A table of lethal amounts. Microbio. Rev. 1982, 46, 86–94. [Google Scholar]
- National Research Council. In Guide for the Care and Use of Laboratory Animals. Available online: https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-animals.pdf (accessed on 21 January 2016).
- Pearce, L.B.; Borodic, G.E.; First, E.R.; MacCallum, R.D. Measurement of botulinum toxin activity: Evaluation of the lethality assay. Toxicol. Appl. Pharm. 1994, 128, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sesardic, D.; McLellan, K.; Ekong, T.A.; Das, R.G. Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type A toxin. Pharmacol. Toxicol. 1996, 78, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Humeau, Y.; Doussau, F.; Grant, N.J.; Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000, 82, 427–446. [Google Scholar] [PubMed]
- Lalli, G.; Herreros, J.; Osborne, S.L.; Montecucco, C.; Rossetto, O.; Schiavo, G. Functional characterisation of tetanus and botulinum neurotoxins binding domains. J. Cell Sci. 1999, 112(Pt. 16), 2715–2724. [Google Scholar] [PubMed]
- Shoemaker, C.; Oyler, G. Persistence of botulinum neurotoxin inactivation of nerve function. Curr. Top. Microbiol. Immunol. 2012, 364, 179–196. [Google Scholar]
- Kauffman, J.A.; Way, J.F., Jr.; Siegel, L.S.; Sellin, L.C. Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol. Appl. Pharm. 1985, 79, 211–217. [Google Scholar] [CrossRef]
- Mezaki, T.; Kaji, R.; Kohara, N.; Fujii, H.; Katayama, M.; Shimizu, T.; Kimura, J.; Brin, M.F. Comparison of therapeutic efficacies of type A and F botulinum toxins for blepharospasm: A double-blind, controlled study. Neurology 1995, 45, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, M.; Nevas, M.; Kurki, J.; Sauna-aho, R.; Latvala-Kiesila, A.; Polonen, I.; Korkeala, H. Type C botulism due to toxic feed affecting 52,000 farmed foxes and minks in Finland. J. Clin. Microbiol. 2004, 42, 4718–4725. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, I.; Sakaguchi, G. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect. Immun. 1980, 28, 303–309. [Google Scholar] [PubMed]
- Schiavo, G.; Shone, C.C.; Bennett, M.K.; Scheller, R.H.; Montecucco, C. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem. 1995, 270, 10566–10570. [Google Scholar] [PubMed]
- Rossetto, O.; Schiavo, G.; Montecucco, C.; Poulain, B.; Deloye, F.; Lozzi, L.; Shone, C.C. Snare motif and neurotoxins. Nature 1994, 372, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, V.V.; Yoshino, K.; Jahnz, M.; Dorries, C.; Bade, S.; Nauenburg, S.; Niemann, H.; Binz, T. Proteolysis of snap-25 isoforms by botulinum neurotoxin types A, C, and E: Domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 1999, 72, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Tricaine-S (MS 222). Available online: http://www.wchemical.com/tricaine-s-ms-222.html (accessed on 20 April 2016).
- Hohn, C.; Petrie-Hanson, L. Low-cost aquatic lab animal holding system. Zebrafish 2007, 4, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Botulinum Neurotoxin Type A, Botulinum Neurotoxin Type C, Botulinum Neurotoxin Type E, Botulinum Neurotoxin Type F. Available online: http://www.metabiologics.com/products.htm (accessed on 20 April 2016).
- Moeller, R.B., Jr.; Puschner, B.; Walker, R.L.; Rocke, T.; Galey, F.D.; Cullor, J.S.; Ardans, A.A. Determination of the median toxic dose of type C botulinum toxin in lactating dairy cows. J. Vet. Diagn. Invest. 2003, 15, 523–526. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatla, K.; Gaunt, P.S.; Petrie-Hanson, L.; Ford, L.; Hanson, L.A. Zebrafish Sensitivity to Botulinum Neurotoxins. Toxins 2016, 8, 132. https://doi.org/10.3390/toxins8050132
Chatla K, Gaunt PS, Petrie-Hanson L, Ford L, Hanson LA. Zebrafish Sensitivity to Botulinum Neurotoxins. Toxins. 2016; 8(5):132. https://doi.org/10.3390/toxins8050132
Chicago/Turabian StyleChatla, Kamalakar, Patricia S. Gaunt, Lora Petrie-Hanson, Lorelei Ford, and Larry A. Hanson. 2016. "Zebrafish Sensitivity to Botulinum Neurotoxins" Toxins 8, no. 5: 132. https://doi.org/10.3390/toxins8050132
APA StyleChatla, K., Gaunt, P. S., Petrie-Hanson, L., Ford, L., & Hanson, L. A. (2016). Zebrafish Sensitivity to Botulinum Neurotoxins. Toxins, 8(5), 132. https://doi.org/10.3390/toxins8050132