Next Article in Journal
Saporin-S6: A Useful Tool in Cancer Therapy
Next Article in Special Issue
A Monoclonal Antibody Based Capture ELISA for Botulinum Neurotoxin Serotype B: Toxin Detection in Food
Previous Article in Journal
Signaling Cascades of Pasteurella multocida Toxin in Immune Evasion
Previous Article in Special Issue
Non-Linear Relationships between Aflatoxin B1 Levels and the Biological Response of Monkey Kidney Vero Cells
Article Menu

Export Article

Open AccessArticle
Toxins 2013, 5(10), 1682-1697;

Faces of a Changing Climate: Semi-Quantitative Multi-Mycotoxin Analysis of Grain Grown in Exceptional Climatic Conditions in Norway

Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Ullevålsveien 68, Oslo N-0454, Norway
Bioforsk Plant Health and Plant Protection, Høgskoleveien 7, Ås N-1430, Norway
Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Vienna, Konrad Lorenz Str. 20, Tulln A-3430, Austria
Research Institute for Pesticides and Water, University Jaume I., Castellón de la Plana E-12071, Spain
Author to whom correspondence should be addressed.
Received: 22 August 2013 / Revised: 13 September 2013 / Accepted: 22 September 2013 / Published: 27 September 2013
(This article belongs to the Special Issue Advances in Toxin Detection)
Full-Text   |   PDF [463 KB, uploaded 27 September 2013]   |  


Recent climatological research predicts a significantly wetter climate in Southern Norway as a result of global warming. Thus, the country has already experienced unusually wet summer seasons in the last three years (2010–2012). The aim of this pilot study was to apply an existing multi-analyte LC-MS/MS method for the semi-quantitative determination of 320 fungal and bacterial metabolites in Norwegian cereal grain samples from the 2011 growing season. Such knowledge could provide important information for future survey and research programmes in Norway. The method includes all regulated and well-known mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone. In addition, a wide range of less studied compounds are included in the method, e.g., Alternaria toxins, ergot alkaloids and other metabolites produced by fungal species within Fusarium, Penicillium and Aspergillus. Altogether, 46 metabolites, all of fungal origin, were detected in the 76 barley, oats and wheat samples. The analyses confirmed the high prevalence and relatively high concentrations of type-A and -B trichothecenes (e.g., deoxynivalenol up to 7230 µg/kg, HT-2 toxin up to 333 µg/kg). Zearalenone was also among the major mycotoxins detected (maximum concentration 1670 µg/kg). Notably, several other Fusarium metabolites such as culmorin, 2-amino-14,16-dimethyloctadecan-3-ol and avenacein Y were co-occurring. Furthermore, the most prevalent Alternaria toxin was alternariol with a maximum concentration of 449 µg/kg. A number of Penicillium and Aspergillus metabolites were also detected in the samples, e.g., sterigmatocystin in concentrations up to 20 µg/kg. View Full-Text
Keywords: climate change; fungi; LC-MS; multiplexing; mycotoxin climate change; fungi; LC-MS; multiplexing; mycotoxin

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Uhlig, S.; Eriksen, G.S.; Hofgaard, I.S.; Krska, R.; Beltrán, E.; Sulyok, M. Faces of a Changing Climate: Semi-Quantitative Multi-Mycotoxin Analysis of Grain Grown in Exceptional Climatic Conditions in Norway. Toxins 2013, 5, 1682-1697.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top