Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish
Abstract
:1. Introduction
Carbamate Toxins | N-Sulfocarbamoyl toxins | Decarbamoyl toxins | Deoxydecarbamoyl toxins | |||
---|---|---|---|---|---|---|
R1 | R2 | R3 | R4: OCONH2 | R4: OCONHSO3- | R4: OH | R4: H |
H | H | H | STX | B1 (GTX 5) | dc-STX | do-STX |
H | H | OSO3- | GTX 2 | C1 | dc-GTX 2 | do-GTX 2 |
H | OSO3- | H | GTX 3 | C2 | dc-GTX 3 | do-GTX 3 |
OH | H | H | NEO | B2 (GTX 6) | dc-NEO | |
OH | H | OSO3- | GTX 1 | C3 | dc-GTX 1 | |
OH | OSO3- | H | GTX 4 | C4 | dc-GTX 4 |
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.3. PSP Toxin Standards
2.4. Mussel Samples
2.5. Production of Monoclonal Antibody (GT-13A)
2.6. Ferrospheres-N (Hollow Glass Magnetic Microspheres)
2.6.1. Coupling of Monoclonal Antibody GT-13A to Ferrospheres-N
2.6.2. Determination of Antibody Binding Capacity of the Ferrospheres-N
2.6.3. Elution Conditions
2.6.4. Ferrosphere-N Reusability
2.6.5. STX Extraction from Spiked Extraction Buffers and Spiked Mussel Extracts
2.6.6. PSP Toxin Extraction from Naturally Contaminated Mussel Samples
2.7. HPLC Procedure for PSP Toxins
3. Results and Discussion
3.1. Ferrospheres-N
3.1.1. Determination of the Antibody Binding Capacity of the Ferrospheres-N
3.1.2. Elution Volume Needed
3.1.3. Reusability
Bead Usage | Mean (±SD) STX Eluted (ng) | % Recovery normalized against recovery obtained after 1st usage |
---|---|---|
1 | 64.5 (±3.2) | 100 |
10 | 64.0 (±7.6) | 99.2 |
20 | 63.8 (±4.2) | 98.9 |
30 | 62.9 (±5.3) | 97.5 |
35 | 59.3 (± 11.1) | 91.9 |
3.1.4. Effect of STX concentration on the Recovery of STX from Spiked Buffers and Mussels
3.1.5. Effect of Time on Recovery of STX from Spiked Mussel Extracts
3.1.6. Effect of Temperature on Recovery of STX from Spiked Mussel Extracts
3.1.7. PSP Toxin Extraction from Naturally Contaminated Mussel Samples
Sample | Ronas Voe | Cribba Sound | ||||
---|---|---|---|---|---|---|
Toxin | AOAC HPLC method (ng/mL) | Recovered after Ferrospheres-N (ng/mL) | % Recovery | AOAC HPLC method (ng/mL) | Recovered after Ferrospheres-N (ng/mL) | % Recovery |
STX | 83 | 69.6 ± 4.1 | 83.9 ± 4.9 | 179 | 67.6 ± 3.3 | 39.3 ± 1.9 |
NEO | ND | ND | ND | 112 | ND | ND |
GTX 1/4 | 437 | 4.2 ± 2.5 | 1.0 ± 0.6 | 417 | 3.8 ± 0.4 | 0.9 ± 0.1 |
GTX 2/3 | 302 | 188.1 ± 6.7 | 62.3 ± 2.2 | 268 | 122.8 ± 34.9 | 45.8 ± 13.0 |
GTX 5 | ND | 1.6 ± 0.6 | ND | 3.3 ± 0.1 | ||
C1/C2 | ND | 22.2 ± 5.6 | ND | 20.2 ± 1.4 |
4. Conclusions
Acknowledgements
References
- Kao, C.Y. Structure-activity relations of tetrodotoxin, saxitoxin, and analogue. Ann. N. Y. Acad. Sci. 1986, 479, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, L.E. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep. 2006, 23, 200–222. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y. Chemistry and Mechanism of Action. In Seafood and Freshwater Toxins: Pharmocology, Physiology and Detection, 1st; Botana, L.M., Ed.; Marcel Dekker: Boca Raton, FL, USA, 2000; pp. 151–172. [Google Scholar]
- Gessner, B.D.; Middaugh, J.P. Paralytic Shellfish Poisoning in Alaska-A 20-Year Retrospective Analysis. Am. J. Epidemiol. 1995, 141, 766–770. [Google Scholar] [PubMed]
- Gessner, B.D.; Middaugh, J.P.; Doucette, G.J. Paralytic shellfish poisoning in Kodiak, Alaska. West. J.Med. 1997, 167, 351–353. [Google Scholar] [PubMed]
- AOAC. Paralytic Shellfish Poison, biological method, final action, method 959.08. In Methods of Analysis of the Association of Official Analytical Chemistry, Met ed; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- AOAC. AOAC official method 2005.06. In AOAC Official Methods of Analysis, 18th ed; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Lawrence, J.F.; Menard, C. Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation. J. AOAC 1991, 74, 1006–1012. [Google Scholar]
- Leao, J.M.; Gago, A.; Rodriguez-Vazquez, J.A.; Aguete, E.C.; Omil, M.M.; Comesana, M. Solid-phase extraction and high-performance liquid chromatography procedures for the analysis of paralytic shellfish toxins. J. Chromatogr. A 1998, 798, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.F.; Niedzwiadek, B.; Menard, C. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. J. AOAC Int. 2005, 88, 1714–1732. [Google Scholar] [PubMed]
- Turner, A.D.; Norton, D.M.; Hatfield, R.G.; Morris, S.; Reese, A.R.; Algoet, M.; Lees, D.N. Refinement and Extension of AOAC Method 2005.06 to Include Additional Toxins in Mussels: Single-Laboratory Validation. J. AOAC Int. 2009, 92, 190–207. [Google Scholar] [PubMed]
- Dietrich, R.; Bürk, C.; Usleber, E.; Martlbauer, E.; Laycock, M.V. Immunoaffinity chromatography as a tool for the analysis of paralytic shellfish poisoning toxins. In Mycotoxins and Phycotoxins-Developments in Chemistry, Toxicology and Food Safety; Miraglia, M., Van Egmond, H.P., Brerera, C., Gilbert, J., Eds.; Alaken, Inc: Fort Collins, CO, USA, 1998; pp. 463–468. [Google Scholar]
- Dietrich, R.; Usleber, E.; Bürk, C.; Martlbauer, E. Immunochemical Approaches to the Analysis of Paralytic Shellfish Poisoning Toxins. In Immunoassays for Residue Analysis: Food Safety; Beier, R.C., Stanker, L.H., Eds.; American Chemical Society: Washington, DC, USA, 1996; pp. 395–403. [Google Scholar]
- Usleber, E.; Dietrich, R.; Bürk, C.; Schneider, E.; Martlbauer, E. Immunoassay methods for paralytic shellfish poisoning toxins. J. AOAC Int. 2001, 84, 1649–1656. [Google Scholar] [PubMed]
- Bates, H.A.; Kostriken, R.; Rapoport, H. A chemical assay for saxitoxin. Improvements and modifications. J. Agric. Food Chem. 1978, 26, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; Stewart, L.D.; Doucette, G.J.; Fodey, T.L.; Haughey, S.A.; Vilarino, N.; Kawatsu, K.; Elliott, C.T. Assessment of Specific Binding Proteins Suitable for the Detection of Paralytic Shellfish Poisons Using Optical Biosensor Technology. Anal. Chem. 2007, 79, 5906–5914. [Google Scholar] [PubMed]
- Kawatsu, K.; Hamano, Y.; Sugiyama, A.; Hashizume, K.; Noguchi, T. Development and application of an enzyme immunoassay based on a monoclonal antibody against gonyautoxin components of paralytic shellfish poisoning toxins. J. Food Prot. 2002, 65, 1304–1308. [Google Scholar] [PubMed]
- Hong, C.Y.; Chen, Y.C. Selective enrichment of ochratoxin A using human serum albumin bound magnetic beads as the concentrating probes for capillary electrophoresis/electrospray ionization-mass spectrometric analysis. J. Chromatogr. A 1159, 250–255. [Google Scholar]
- Buckley, L.J.; Ikawa, M.; Sasner, J.J. Isolation of Gonyaulaxtamarensis toxins from soft shell clams (Mya arenaria) and a thin-layer chromatographic-fluorometric method for their detection. J. Agric. Food Chem. 1976, 24, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Fallon, W.E.; Wekell, J.C.; Gerber, D., Jr.; Gauglitz, E.J. Analysis of toxic mussels (Mytilussp.) from the Alaskan Inside Passage. J. Agric. Food Chem. 1978, 26, 878–881. [Google Scholar] [PubMed]
- Thomas, K.; Blay, P.; Burton, I.W.; Cembella, A.D.; Craft, C.; Crain, S.; Hardstaff, W.R.; Howes, D.; Laycock, D.; LeBlanc, D.; LeBlanc, P.; Lewis, N.; MacKinnon, S.L.; Marciniak, D.; Reeves, K.; Walter, J.A.; Windust, A.J.; Quilliam, M.A. Certified Reference Materials for Marine Toxins. In Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, Moncton, Canada, 28-30 May 2003.
- Alefantis, T.; Grewal, P.; Ashton, J.; Khan, A. S.; Valdes, J.J.; Dell Vecchio, V.G. A rapid and sensitive magnetic bead-based immunoassay for the detection of staphylococcal enterotoxin B for high-through put screening. Mol. Cell. Probes 2004, 18, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Gessler, F.; Hampe, K.; Schmidt, M.; Böhnel, H. Immunomagnetic beads assay for the detection of botulinum neurotoxin types C and D. Diagn. Microbiol. Infect. Dis. 2006, 56, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Hervás, M.; López, M.A.; Escarpa, A. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: An anticipated analytical tool for food safety. Anal. Chim. Acta 2009, 653, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Romanazzo, D.; Ricci, F.; Vesco, S.; Piermarini, S.; Volpe, G.; Moscone, D.; Palleschi, G. ELIME (enzyme linked immuno magnetic electrochemical) method for mycotoxin detection. J. Vis. Exp. 2009. Available online: http://www.jove.com/index/details.stp?id = 1588 (Accessed on 14 December 2010).
- Piermarini, S.; Volpe, G.; Micheli, L.; Moscone, D.; Palleschi, G. An ELIME-array for detection of aflatoxin B-1 in corn samples. Food Control 2009, 20, 371–375. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Devlin, R.; Campbell, K.; Kawatsu, K.; Elliott, C. Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish. Toxins 2011, 3, 1-16. https://doi.org/10.3390/toxins3010001
Devlin R, Campbell K, Kawatsu K, Elliott C. Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish. Toxins. 2011; 3(1):1-16. https://doi.org/10.3390/toxins3010001
Chicago/Turabian StyleDevlin, Raymond, Katrina Campbell, Kentaro Kawatsu, and Christopher Elliott. 2011. "Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish" Toxins 3, no. 1: 1-16. https://doi.org/10.3390/toxins3010001