Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment
Abstract
1. Introduction
2. Presence of Filamentous Fungi and Potential Risk to Human Health
3. Occurrence of Mycotoxins
4. Requirements and Standard of Quality
5. Mycotoxins Testing Methods
6. Risk Assessment of Mycotoxin Intake
- hazard identification—identifying the chemical compound that poses a health risk;
- hazard characterization—the conditions under which a specific chemical compound may cause adverse health effects or disease, and the dose;
- exposure assessment—estimating the frequency, intensity and duration of ingestion of the toxin;
- risk characterization—integrating the results of the exposure assessment with the results of the risk characterization to estimate the degree of concern [103].
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ałtyn, I.; Twarużek, M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins 2020, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Jiang, J.Y.; Zhang, L.; Dou, X.W.; Ouyang, Z.; Wan, L.; Yang, M.H. Occurrence and analysis of mycotoxins in domestic Chinese herbal medicines. Mycotology 2020, 11, 126–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Palumno, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [Google Scholar]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Jalili, M.; Jinap, S. Natural occurence of aflatoxins and ochratoxin A in commercial dried chili. Food Control 2012, 24, 160–164. [Google Scholar] [CrossRef]
- Pickova, D.; Ostry, V.; Malir, J.; Toman, J.; Malir, F. A review on mycotoxins and microfungi in spices in the light of the last five years. Toxins 2020, 12, 789. [Google Scholar] [CrossRef]
- Jarzynka, S.; Dąbkowska, M.; Netsvyetayeva, I.; Swoboda-Kopeć, E. Mikotoksyny—Niebezpieczne metabolity grzybów pleśniowych. Med. Rodz. 2010, 4, 113–119. [Google Scholar]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- EFSA. Available online: https://www.efsa.europa.eu/en/topics/topic/mycotoxins?utm_source=chatgpt.com (accessed on 15 October 2025).
- Syamilah, N.; Nurul, A.S.; Effarizah, M.E.; Norlia, M. Mycotoxins and mycotoxigenic fungi in spices and mixed spices: A review. Food Res. 2022, 6, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Bojarowicz, H.; Dźwigulska, P. Suplementy diety. Część II. Wybrane składniki suplementów diety oraz ich przeznaczenie. Hygeia Public Health 2012, 47, 433–441. [Google Scholar]
- Malir, F.; Pickova, D.; Toman, J.; Grosse, Y.; Ostry, V. Hazard characterisation for significant mycotoxins in food. Mycotoxin Res. 2023, 39, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Pallares, N.; Berrada, H.; Font, G.; Ferrer, E. Mycotoxins occurrence in medicinal herb dietary supplements and exposure assessment. J. Food Sci. Technol. 2021, 59, 2830–2841. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Available online: https://www.iarc.who.int/ (accessed on 15 October 2025).
- Mallebrera, B.; Prosperini, A.; Font, G.; Ruiz, M.J. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem. Toxicol. 2018, 111, 537–545. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium—Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin—A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Pestka, J.J.; Smolinski, A.T. Deoxynicalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health Part B Crit. Rev. 2005, 8, 36–69. [Google Scholar] [CrossRef]
- Payros, D.; Alassane-Kpembi, I.; Pierron, A.; Loiseau, N.; Pinton, P.; Oswald, I.P. Toxicology of deoxynivalenol and its acetylated and modified form. Arch. Toxicol. 2016, 90, 2931–2957. [Google Scholar] [CrossRef]
- Nagashima, H. Deoxynivalenol and nivalenol toxicities in cultured cells: A review of comparative studies. Food Saf. 2018, 6, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Aupanun, S.; Poapolathep, S.; Giorgi, M.; Imsilp, K.; Poapolathep, A. An overview of the toxicology and toxicokinetics of fusarenon-X, a type B trichothecene mycotoxin. J. Vet. Med. Sci. 2017, 79, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Malto, J.C.; Manes, J. Review of the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.; Greer, B.; Kolawole, O.; Elliott, C. T-2 and HT-2 Toxins: Toxicity, occurrence and analysis: A review. Toxins 2023, 15, 481. [Google Scholar] [CrossRef]
- CONTAM EFSA. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J. 2018, 16, 8. [Google Scholar]
- Özkan, A.; Bindak, R.; Erkmen, O. Aflatoxin B1 and aflatoxins in ground red chilli pepper after drying. Food Addit. Contam. Part B 2015, 8, 227–233. [Google Scholar] [CrossRef]
- Zargar, S.; Wani, T.A. Food toxicity of mycotoxin citrinin and molecular mechanisms of its potential toxicity effects through the implicated targets predicted by computer-aided multidimensional data analysis. Life 2023, 13, 880. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Keter, L.; Too, R.; Mwikwabe, N.; Mutai, C.; Orwa, J.; Mwamburi, L.; Ndwigah, S.; Bii, C.; Korir, R. Risk of fungi associated with Aflatoxin and Fumonisin in medicinal herbal products in the Kenyan market. Sci. World J. 2017, 2017, 1892972. [Google Scholar] [CrossRef]
- Santos Pereira, C.; Cunha, C.S.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef]
- Shima, J.; Takase, S.; Takahashi, Y.; Iwai, Y.; Fujimoto, H.; Yamazaki, M.; Ochi, K. Novel detoxifi cation of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl. Environ. Microbiol. 1997, 63, 3825–3830. [Google Scholar] [CrossRef]
- Sewram, V.; Gordon, S.; van der Merwe, S.L.; Jacobs, T.V. Mycotoxin Contamination of Dietary and Medicinal Wild Plants in the Eastern Cape Province of South Africa. J. Agric. Food Chem. 2006, 54, 5688–5693. [Google Scholar] [CrossRef] [PubMed]
- Grajewski, J. Mikotoksyny i mikotoksykozy zagrożeniem dla człowieka i zwierząt. In Mikotoksyny i Grzyby Pleśniowe Zagrożeniem Dla Człowieka i Zwierząt; Grajewski, J., Ed.; UKW: Bydgoszcz, Poland, 2006; pp. 117–147. (In Polish) [Google Scholar]
- Tournas, V.H. Microbial contamination of select dietary supplements. J. Food Saf. 2009, 29, 430–442. [Google Scholar] [CrossRef]
- Filipiak-Szok, A.; Kurzawa, M.; Szłyk, E.; Twarużek, M.; Błajet-Kosicka, A.; Grajewski, J. Determination of mycotoxins, alkaloids, phytochemicals, antioxidants and cytotoxicity in Asiatic ginseng (Ashwagandha, Dong quai, Panax ginseng). Chem. Pap. 2017, 71, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Twarużek, M.; Błajet-Kosicka, A.; Kosicki, R.; Soszczyńska, E.; Kwiatkowska, J.; Grajewski, J. Occurrence of Ochratoxin A in green coffee and in diet supplements based on green coffee extract. In Proceedings of the XI International Conference Trends in Food, Feed and Environmental Safety, Bydgoszcz, Poland, 29–30 July 2015. [Google Scholar]
- Rajeshwari, P.; Raveesha, K.A. Mycological analysis and aflatoxin b1contaminant estimation of herbal drug raw materials. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Alcántara-Durán, J.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem. 2019, 276, 419–426. [Google Scholar] [CrossRef]
- Coppa, C.F.S.C.; Khaneghah, A.M.; Alvito, P.; Assunção, R.; Martins, C.; Eş, I.; Gonçalves, B.L.; de Neeff, D.V.; Sant’Ana, A.S.; Corassin, C.H.; et al. The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends Food Sci. Technol. 2019, 92, 81–93. [Google Scholar] [CrossRef]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Barabasz, W.; Pikulicka, A. Mycotoxins—A threat to human and animal health Part. 1. Mycotoxins—Characteristics, occurrence, toxicity to organisms. J. Health Study Med. 2017, 3, 65–108. (In Polish) [Google Scholar]
- Velazhahan, R.; Vijayanandraj, S.; Vijayasamundeeswari, A. Detoxification of Aflatoxins by seed extracts of the medicinal plant, Trachyspermum ammi (L.) Sprague ex Turrill—Structural analysis and biological toxicity of degradation product of Aflatoxin G1. Food Control 2010, 21, 719–725. [Google Scholar] [CrossRef]
- Zdulski, J.; Chabuz, W.; Sawicka-Zugaj, W.; Stobiecka, M. Herbal plants as an important feed additives for ruminants. J. Anim. Sci. Biol. Bioeconomy 2019, 37, 23–33. (In Polish) [Google Scholar] [CrossRef]
- Su, C.; Hu, Y.; Gao, D.; Luo, Y.; Chen, A.J.; Jiao, X.; Hao, W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J. Food Prot. 2018, 81, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lyu, J.; Lee, K.G. Analysis of Aflatoxins in herbal medicine and health functional foods. Food Control 2015, 48, 33–36. [Google Scholar] [CrossRef]
- Chen, L.; Guo, W.; Zheng, Y.; Zhou, J.; Liu, T.; Chen, W.; Liang, D.; Zhao, M.; Zhu, Y.; Wu, Q.; et al. Occurrence and Characterization of Fungi and Mycotoxins in Contaminated Medicinal Herbs. Toxins 2020, 12, 30. [Google Scholar] [CrossRef]
- Jarczyk, A. Mikotoksyny zawarte w paszach zagrożeniem dla zdrowia i produkcyjności zwierząt. In Proceedings of the LXV Zjazd Naukowy PTZ, Olsztyn, Poland, 23–24 September 2021. Przegląd Hodowlany (In Polish). [Google Scholar]
- Pallares, N.; Tolosa, J.; Manes, J.; Ferrer, E. Occurrence of mycotoxins in botanical dietary supplement infusion beverages. J. Nat. Prod. 2019, 82, 8. [Google Scholar] [CrossRef]
- Santos, L.; Marin, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Daou, D.; Hoteit, M.; Bookari, K.; Joubrane, K.; Khabbaz, L.R.; Ismail, A.; Maroun, R.G.; el Khoury, A. Public health risk associated with the co-occurrence of aflatoxin B1 and ochratoxin A in spices, herbs, and nuts in Lebanon. Front. Public Health 2022, 10, 1072727. [Google Scholar] [CrossRef]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fumonisins B1 and B2 in black tea and medicinal plants. J. Food Prot. 2001, 64, 1268–1270. [Google Scholar] [CrossRef]
- Tosun, H.; Arslan, R. Determination of aflatoxin B1 levels in organic spices and herbs. Sci. World J. 2013, 2013, 874093. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Beszterda, M.; Bocianowski, J.; Goliński, P. Natural occurrence of fumonisins and Ochratoxin A in some herbs and spices commercialized in Poland analyzed by UPLC-MS/MS method. Food Microbiol. 2013, 36, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Lasram, S.; Hajri, H.; Hamdi, Z. Aflatoxins and ochratoxin A in rech chili (Capsicum) powder from Tunisia: Co-occurrence and fungal associated microbiota. J. Food Qual. Hazards Control 2022, 9, 32–42. [Google Scholar]
- Reinholds, I.; Pugajeva, I.; Bartkevics, V. A reliable screening of mycotoxins and pesticide residues in paprika using ultrahigh performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry. Food Control 2016, 60, 683–689. [Google Scholar] [CrossRef]
- Set, E.; Erkmen, O. Occurrence of aflatoxins in ground red chilli pepper and pistachio nut. Int J. Food Prop. 2014, 17, 2322–2331. [Google Scholar] [CrossRef]
- Martinez-Dominguez, G.; Romero-Gonzalez, R.; Frenich, A.G. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem. 2016, 15, 197. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Piemontese, L.; Gambacorta, L.; Zivoli, R.; Longobardi, F. Food coloring agents and plant food supplements derived from Vitis vinifera: A new source of human exposure to Ochratoxin A. J. Agric. Food Chem. 2015, 63, 3609–3614. [Google Scholar] [CrossRef]
- Tan, Y.; Kuang, Y.; Zhao, R.; Chen, B.; Wu, J. Determination of T-2 and HT-2 toxins in traditional chinesemedicine marketed in China by LC–ELSD after sample clean-up by two solid-phase extractions. Chromatographia 2011, 73, 407–410. [Google Scholar] [CrossRef]
- Vaclavik, L.; Vaclavikova, M.; Begley, T.H.; Krynitsky, A.J.; Rader, J.I. Determination of Multiple Mycotoxins in Dietary Supplements Containing Green Coffee Bean Extracts Using Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS). J. Agric. Food Chem. 2013, 61, 4822–4830. [Google Scholar] [CrossRef]
- Bessaire, T.; Perrin, I.; Tarres, A.; Bebius, A.; Reding, F.; Theurillat, V. Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 2019, 96, 59–67. [Google Scholar] [CrossRef]
- Regulation (EC) No 178/2002. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02002R0178-20240701 (accessed on 15 October 2025).
- Regulation (EC) No 915/2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R0915-20250701 (accessed on 15 October 2025).
- DSHEA—Dietary Supplement Health and Education Act of 1994. Available online: https://ods.od.nih.gov/About/DSHEA_Wording.aspx (accessed on 15 October 2025).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/ (accessed on 16 October 2025).
- European Directorate for the Quality of Medicines & HealthCare. Available online: https://www.edqm.eu/en/ (accessed on 17 October 2025).
- World Health Organization. Available online: https://www.who.int/ (accessed on 17 October 2025).
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Martins, L.M.; von Hertwig, A.M.; Bertoldo, R.; Sant’Ana, A.S. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing-A review. Trends Food Sci. Technol. 2019, 71, 13–24. [Google Scholar] [CrossRef]
- Ioi, J.D.; Zhou, T.; Tsao, R.; Marcone, F.M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins 2017, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Samsidar, A.; Siddiqueea, S.; Shaarani, S.M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 2017, 71, 188–201. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; Document No. SANTE/12682/2019; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef]
- Kaczyński, P.; Łozowicka, B. A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasound-assisted dispersive solid phase extraction method coupled to liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2020, 187, 113351. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef]
- Hrynko, I.; Łozowicka, B.; Kaczyński, P. Comprehensive analysis of insecticides in melliferous weeds and agricultural crops using a modified QuEChERS/LC-MS/MS protocol and of their potential risk to honey bees (Apis mellifera L.). Sci. Total Environ. 2019, 657, 16–27. [Google Scholar] [CrossRef]
- Xie, L.; Chen, M.; Ying, Y. Development of Methods for Determination of Aflatoxins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2642–2664. [Google Scholar] [CrossRef]
- Somsubsin, S.; Seebunrueng, K.; Boonchiangma, S.; Srijaranai, S. A simple solvent based microextraction for high performance liquid chromatographic analysis of aflatoxins in rice samples. Talanta 2018, 176, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lu, J.; Wang, S.; Mao, D.; Miao, S.; Ji, S. Multi-mycotoxins analysis in Pheretima using ultra-high-performance liquid chromatography tandem mass spectrometry based on a modified QuEChERS method. J. Chromatogr. B 2016, 1035, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstus: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef]
- Li, N.; Wu, D.; Li, X.; Zhou, X.; Fan, G.; Li, G.; Wu, Y. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents. Food Chem. 2020, 306, 125455. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Gorniak, L.; Stela, M.; Bijak, M. The Existing Methods and Novel Approaches in Mycotoxins’ Detection. Molecules 2021, 26, 3981. [Google Scholar] [CrossRef]
- Kowalska, G.; Kowalski, R. Occurrence of mycotoxins in selected agricultural and commercial products available in eastern Poland. Open Chem. 2021, 19, 653. [Google Scholar] [CrossRef]
- Koul, A.; Sumbali, G. Detection of Zearalenone, Zearalenol and Deoxynivalenol from medicinally important dried rhizomes and root tubers. Afr. J. Biotechnol. 2008, 7, 4136–4139. [Google Scholar]
- Vila-López, M.V.; Pallarés, N.; Ferrer, E.; Tolosa, J. Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins 2023, 15, 379. [Google Scholar] [CrossRef]
- Madajska, K.; Tratwal, A.; Bocianowski, J. Przydatność pszenżyta ozimego w różnych warunkach gospodarowania w świetle wymogów integrowanej ochrony oraz Europejskiego Zielonego Ładu. Pol. J. Food Nutr. Sci. 2025, 65, 40–52. (In Polish) [Google Scholar]
- Han, Z.; Ren, Y.; Zhu, J.; Cai, Z.; Chen, Y.; Luan, L.; Wu, Y. Multianalysis of 35 Mycotoxins in Traditional Chinese Medicines by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Coupled with Accelerated Solvent Extraction. J. Agric. Food Chem. 2012, 60, 8233–8247. [Google Scholar] [CrossRef]
- Kappenberg, A.; Juraschek, L.M. Development of a LC–MS/MS Method for the Simultaneous Determination of the Mycotoxins Deoxynivalenol (DON) and Zearalenone (ZEA) in Soil Matrix. Toxins 2021, 13, 470. [Google Scholar] [CrossRef] [PubMed]
- Philana, N.; Sanna, A.; Spehar, A.; Elliott, C.T.; Campbell, K. Current trends in rapid tests for mycotoxins. Food Addit. Contam. Part A Chem. 2019, 36, 800–814. [Google Scholar]
- Bio-Rad Laboratories. ELISA Basics Guide; Bio-Rad Laboratories: Kidlington, UK, 2017; pp. 1–40. [Google Scholar]
- AHDB Beef & Lamb. Mycotoxin Contamination in Animal Feed and Forages; AHDB: Warwickshire, UK, 2016; pp. 1–12. [Google Scholar]
- Tripathi, P.; Upadhyay, N.; Nara, S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 1715–1734. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.B.; Miller, J.D.; Sumarah, M.W. Determination of Mycotoxins in Food and Feed: An Overview. J. AOAC Int. 2019, 102, 1681–1688. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Kong, W.J.; Liu, C.M.; Han, X.; Yang, M.H. Assessment of critical points and development of a practical strategy to extend the applicable scope of immunoaffinity column cleanup for aflatoxin detection in medicinal herbs. J. Chromatogr. A 2017, 1483, 56–63. [Google Scholar] [CrossRef]
- McKean, C.; Tang, L.; Tang, M.; Billam, M.; Wang, Z.; Theodorakis, C.W.; Kendall, R.J.; Wang, J.S. Comparative acute and combinative toxicity of Aflatoxin B1 and Fumonisin B1 in animals and human cells. Food Chem. Toxicol. 2006, 44, 868–876. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Food and Agriculture Organization and World Health Organization (FAO/WHO). Food Consumption and Exposure Assessment of Chemicals; WHO: Geneva, Switzerland, 1997; pp. 1–69. [Google Scholar]
- European Food Safety Authority (EFSA). Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 337. [Google Scholar] [CrossRef]
- Loewe, S.; Muischnek, H. Über kombinationswirkungen. Arch. Exp. Pathol. Pharmakol. 1926, 114, 313–326. [Google Scholar] [CrossRef]
- Bliss, C. The toxicity of poisons applied jointly. Ann. Appl. Biol. 1939, 26, 585–616. [Google Scholar] [CrossRef]
- Jonker, M.J.; Piskiewicz, A.M.; Castellà, I.; Castellà, N.; Kammenga, J.E. Toxicity of binary mixtures of cadmium-copper and carbendazim-copper to the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2004, 23, 1529–1537. [Google Scholar] [CrossRef]
- Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat. Toxicol. 2003, 63, 43–63. [Google Scholar] [CrossRef]
- Loureiro, S.; Svendsen, C.; Ferreira, A.L.G.G.; Pinheiro, C.; Ribeiro, F.; Soares, A.M.V.M. Toxicity of three binary mixtures to Daphnia magna: Comparing chemical modes of action and deviations from conceptual models. Environ. Toxicol. Chem. 2010, 29, 1716–1726. [Google Scholar] [CrossRef]
- Mueller, A.; Schlink, U.; Wichmann, G.; Bauer, M.; Graebsch, C.; Schüürmann, G.; Herbarth, O. Individual and combined effects of mycotoxins from typical indoor moulds. Toxicol. Vitr. 2013, 27, 1970–1978. [Google Scholar] [CrossRef]
- Assunção, R.; Silva, M.J.; Alvito, P. Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin J. 2016, 5, 791–811. [Google Scholar] [CrossRef]
| Species of Filamentous Fungi | Name of Isolated Strain | Examples of Produced Mycotoxins | Potential Risk to Human Health | References |
|---|---|---|---|---|
| Fusarium sp. | F. proliferatum | fumonisins B1, B2, B3 | Carcinogenic, hepatotoxic, nephrotoxic | [16] |
| beauvericin | Cytotoxic | [19,20] | ||
| enniatins (B, B1, A, A1) | Cytotoxic with the capacity to disrupt intracellular ionic homeostasis | [16,20] | ||
| fusaproliferin | Cytotoxic | |||
| moniliformin | Carcinogenic, weight loss, intestinal haemorrhage | |||
| F. avenaceum | ||||
| F. temperatum | ||||
| F. tricinctum | ||||
| F. graminearum F. culmorum | deoxynivalenol | Inhibits DNA, protein synthesis, and causes immunosuppression. | [16,21,22] | |
| 3-acetyl-deoxynivalenol | Apoptosis, inhibition of cell division, disruption of DNA repair processes. | [22] | ||
| 15-acetyl-deoxynivalenol | ||||
| nivalenol | Inhibition of cell division | [23] | ||
| fusarenon-X | Inhibition of protein synthesis | [24] | ||
| zearalenone | Estrogenic activity | [16] | ||
| α-zearalenol β-zearalenol | Increases oestrogenic activity | [25] | ||
| F. sporotrichioides | T-2 toxin | Inhibitor of protein synthesis and mitochondrial function in vitro and in vivo; immunosuppressive and cytotoxic effects | [16,26] | |
| HT-2 toxin | Dermatotoxic, ecrosis and bleeding of the intestinal mucosa | |||
| 4,15-diacetoxyscirpenol | Hepatotoxic | [27] | ||
| F. poae | ||||
| beauvericin | Cytotoxic | [16,19,20] | ||
| enniatins (A, A1, B, B2) | Cytotoxic with the capacity to disrupt intracellular ionic homeostasis | |||
| F. tricinctum | ||||
| Aspergillus sp. | A. flavus A. parasiticus A. nomiae | aflatoxins B1, B2, G1, G2 | B1 classified as group 1 of human carcinogens | [16,28] |
| A. ochraceus A. carbonarius A. niger A. westerdijkiae A. steynii | ochratoxin A | Strong nephrotoxic, hepatotoxic and immunotoxic effects | [16,18] | |
| A. flavus | cyclopiazonic acid | Carcinogenic, weight loss, loss of lactation | [16] | |
| A. versicolor | sterigmatocystin | Carcinogenic, diarrhoea, changes in the liver and kidneys | [16] | |
| Penicillium sp. | P. verrucosum P. nordicum | ochratoxin A | Strong nephrotoxic, hepatotoxic and immunotoxic effects | [16,18] |
| P. patulinum P. urticae P. chrysogenum P. expansum | patulin | Pulmonary and cerebral haemorrhages | [16] | |
| P. citrinum P. verrucosum | cytrinin | Nephrotoxic | [29] | |
| P. citreoviride P. ochrosalmoneum P. toxicarium | cytreoviridin | Nephrotoxic, impairs the functioning of mitochondria | [16] | |
| P. islandicum | luteoskyrin | Mutagenic | [16] | |
| P. cyclopium | penicillic acid | Less toxic than patulin | [16] | |
| Alternaria sp. | A. alternata | alternaliol alternariol monomethyl ether tenuazonic acid altenuene | Inhibits cell division and induces cell apoptosis, mimics the action of hormones | [30] |
| A. arboerscens A. tenuissima |
| Pant Material | Identified Mycotoxins | Concentration [µg/kg] | References |
|---|---|---|---|
| Herbs | |||
| Pennyroyal mint (Mentha pulegium L.) (water infusion) | aflatoxin B2 aflatoxin G2 | 71.9 (mean) 3.8 (mean) | [50] |
| Mint (Mentha sp.) | ochratoxin A aflatoxin zearalenone t-2 toxin deoxynivalenol citrinine | 1–1.4 16.6–29.7 2.1–9.3 3.9–4.9 46.9–91.1 41.0–43.3 | [51] |
| aflatoxins ochratoxin A | <LOD-0.89 <LOD | [52] | |
| Thyme (Thymus vulgaris L.) | aflatoxin B1 ochratoxin A | 0.72–0.96 0.02–1.94 | [52] |
| Thyme (Thymus vulgaris L.) (water infusion) | aflatoxin B2 aflatoxin G2 | 112.2 (mean) 4.7 (mean) | [50] |
| Valerian (Valeriana officinalis L.) (water infusion) | aflatoxin G2 | 13.5 (mean) | |
| Valerian (Valeriana officinalis L.) | enniatin A enniatin A1 enniatin B enniatin B1 | 63.1–88.7 8.5–42.7 0.8–27.8 22.3 | [16] |
| Horsetail (Equisetum arvense L.) (water infusion) | aflatoxin G2 | 2.2 (mean) | [50] |
| Tea/Green Tea (Camellia sinensis L.) (water infusion) | aflatoxin B2 | 14.4–32.2 | |
| Herbal mix for insomnia (species not specified) | ochratoxin A enniatin A | 799 (mean) 3.8 (mean) | [16] |
| Milk thistle (Silybum marianum (L.) Gaertn.) | enniatin A enniatin A1 enniatin B enniatin B1 beauvericin | 36.6–109.2 57.6–534.9 6.2–1378.2 24.2–1165.9 <LOQ-542.7 | |
| Boldus (Peumus boldus Molina) | zearalenone enniatin B | 1169–1995 1.8–5.4 | |
| Melissa (Melissa officinalis L.) | zearalenone enniatin B | 117 (mean) 6.6 (mean) | |
| Chamomile (Matricaria chamomilla L.) | fumonisins | 20–70 | [53] |
| ochratoxin A | 0.8–1.0 | [51] | |
| fumonisins | <LOD-90 | ||
| aflatoxins | 35.8–161 | ||
| zearalenone | 7.3–12.5 | ||
| t-2 toxin | 3.5–8.3 | ||
| deoxynivalenol | 123.4–191.5 | ||
| cytrinina | 31.7–38.9 | ||
| aflatoxins | 3.4–38.9 | [54] | |
| Coriander (Coriandrum sativum L.) | aflatoxin B1 ochratoxin a | 0.85–2.16 0.02–10.98 | [52] |
| Oregano (Origanum vulgare L.) | aflatoxin B1 ochratoxin A | <LOD-0.82 0.67–4.59 | |
| fumonisin B1 fumonisin B2 ochratoxin A | 6.83 (mean) 5.33 (mean) 22.12 (mean) | [55] | |
| Basil (Ocimym basilicum L.) | aflatoxin B1 ochratoxin A | <LOD 0.45–0.71 | [52] |
| Anise (Pimpinela anisum L.) | aflatoxin B1 ochratoxin A | 0.84–4.87 0.02–23.82 | |
| Rosemary (Rosmarinus officinalis L.) | fumonisin B1 fumonisin B2 ochratoxin A | 7.72 (mean) 8.29 (mean) 5.07 (mean) | [55] |
| Thyme (Thymus vulgaris L.) | ochratoxin A | 15.59 (mean) | |
| Spices | |||
| Ginger (Zingiber officinale Roscoe) | zearalenone enniatin B beauvericin | 3850 (mean) 3.3–15.1 95.7–136.8 | [16] |
| Herbal medicines | total aflatoxins aflatoxin B1 | 4.5–108.4 11.9–73.3 | [33] |
| Curry (species not specified) | fumonisin B1 ochratoxin A | 6.56 (mean) 19.01 (mean) | [55] |
| Paprika/Red pepper (Capsicum annuum L.) | ochratoxin A aflatoxin B1 | 3.0–12.0 <LOD | [56] |
| fumonisin B1 sterigmatocystin | 11–124 <LOD | [57] | |
| aflatoxin B1 ochratoxin A | 0.15–0.94 0.13–3.62 | [52] | |
| Sweet pepper (Capsicum annuum L.) | aflatoxin B1 ochratoxin A | 0.14–0.96 0.47–44.22 | [52] |
| White pepper (Piper nigrum L.) | aflatoxin B1 ochratoxin A | 0.15–3.11 0.12–452.46 | [52] |
| fumonisin B1 fumonisin B2 ochratoxin A | 7.20 (mean) 5.28 (mean) 29.41 (mean) | [55] | |
| Black pepper (Piper nigrum L.) | aflatoxin B1 ochratoxin A | 0.15–0.32 0.85–238.95 | [52] |
| fumonisin B1 fumonisin B2 ochratoxin A | 9.77 (mean) 9.03 (mean) 9.46 (mean) | [55] | |
| Red chilli pepper (Capsicum annuum L.) | total aflatoxins aflatoxin B1 | 0.13–57.30 0.07–55.90 | [58] |
| total aflatoxins aflatoxin B1 | 0.19–19.89 0.38–22.24 | [28] | |
| Nutmeg (Myristica fragrans Houtt.) | aflatoxin B1 ochratoxin A | 1.65–18.35 1.39–236.26 | [52] |
| Cinnamon (Cinnamomum sp.) | aflatoxin B1 ochratoxin A | 0.15–0.84 0.02–2.99 | [52] |
| ochratoxin A | 2.14 (mean) | [55] | |
| Cumin (Cuminum cyminum L.) | aflatoxin B1 ochratoxin A | 0.14–1.90 0.12–31.99 | [52] |
| Dietary supplements | |||
| Green tea (Camellia sinensis (L.) Kuntze) | aflatoxin B1 | 5.4 (mean) | [59] |
| Plant-based (various plant species) | ochratoxin A | <1.16–20.23 | [60] |
| fumonisin B1 | 34 to 524 | [34] | |
| T-2 toxin | 64 (mean) | [61] | |
| Dietary supplements containing green coffee bean extracts (Coffea arabica L.) | ochratoxin A ochratoxin B fumonisin B1 mycophenolic acid | <1.0–136.9 <1.0–20.2 <50.0–415.0 <5.0–395.0 | [62] |
| Green tea (Camellia sinensis (L.) Kuntze) | ochratoxin A, fumonisin B2, sterigmatocystin, beauvericin enniatin A aflatoxin B1 | 12.2 (mean) 76.3 (mean) 19.8 (mean) 4.4 (mean) 1.7 (mean) 1.2 (mean) | [63] |
| Method Group | Technique | Application | Advantages | Limitations | Example of Matrices | References |
|---|---|---|---|---|---|---|
| Purification and sample preparation methods | ||||||
| Basic extraction methods | SLE—Solid–Liquid Extraction | Broad-spectrum extraction of mycotoxins | Simple, low-cost | High solvent consumption, low selectivity | Dried herbs, spices, herb tablets | [75] |
| LLE—Liquid–Liquid Extraction | Pre-cleaning of extracts | Good separation from lipids | Time-consuming, analyte loss possible | Supplements in the form of plant oils | ||
| Advanced extraction | MSPD—Matrix Solid Phase Dispersion | Extraction from difficult matrices | Combines extraction & cleanup | Requires sorbent optimization | Hard spices and herbs | |
| SPE—Solid Phase Extraction | Cleanup before LC-MS/HPLC | High selectivity | Requires sorbent choice | Powdered herbs, plant supplements, finely ground spices | ||
| SPME—Solid Phase Microextraction | Volatile/semi-volatile toxins | Solvent-free | Low efficiency for large analytes | cinnamon, aniseed, cloves; essential oils | ||
| Modern extraction | QuEChERS | Multi-mycotoxin extraction in complex matrices such as herbs, spices, cereals, and supplements | Fast, low-cost, minimal solvent use, suitable for LC-MS/MS, compatible with many matrices | Requires optimization of sorbents (PSA, C18), potential loss of planar molecules, matrix effects may remain | Spice mixes, chilli, curry, ginger, dried herbs, supplements in capsules and tablets | [71,76,77,78,79] |
| MAE—Microwave Assisted Extraction | Accelerated extraction | Fast, reduced solvents | Thermal degradation risk | Dried herbs, ginger, turmeric, hard spices | [81,82,83,84] | |
| UAE—Ultrasonic Assisted Extraction | Extraction from raw matrices | Fast, inexpensive | Inconsistent efficiency possible | Fresh and dried herbs, powdered supplements, spice mixes | ||
| ASE—Accelerated Solvent Extraction | Pressurized solvent extraction | High efficiency | Expensive instrumentation | Supplements from plant extracts, green coffee, bark and roots | ||
| SFE—Supercritical Fluid Extraction | Plant material extraction | Green method, low solvent use | Limited availability | Oil-based supplements, spices rich in essential oils | ||
| Selective cleanup | IAC—Immunoaffinity Columns | Cleanup of aflatoxins, ochratoxin A, zearalenone | Highly selective | Costly, requires aqueous extracts | All spices, herbs and herbal supplements | [32,85,87] |
| MIPs—Molecularly Imprinted Polymers | Selective toxin binding | High specificity | Optimization required | Herbal supplements, ground spices, herbal teas | ||
| Instrumental methods | ||||||
| Chromatography | HPLC-FLD (High-performance liquid chromatography with fluorescence detection) | aflatoxins, ochratoxin A | High sensitivity | Limited multi-toxin capability | All spices and herbs, plant supplements, herbal mixtures | [71,77,89,90,91,92] |
| LC-MS/MS (Liquid chromatography-tandem mass spectrometry) | multi-mycotoxin analysis | Gold standard; high selectivity | Expensive instruments | |||
| GC-MS/MS (Gas chromatography-tandem mass spectrometry) | patulin, volatile trichothecenes | High selectivity | Requires derivatization | Aromatic spices with volatile fractions | ||
| Immunochemical screening | ELISA (Enzyme-linked immunosorbent assay) | aflatoxins, ochratoxin A, fumonisins, deoxynivalenol | Fast, inexpensive | Cross-reactivity | Ground spices, single herbs, powdered supplements | [32,92,93,94,95,96,97,98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kanabus, J.; Bryła, M.; Leśnowolska-Wnuczek, K.; Waśkiewicz, A.; Twarużek, M. Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment. Toxins 2026, 18, 20. https://doi.org/10.3390/toxins18010020
Kanabus J, Bryła M, Leśnowolska-Wnuczek K, Waśkiewicz A, Twarużek M. Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment. Toxins. 2026; 18(1):20. https://doi.org/10.3390/toxins18010020
Chicago/Turabian StyleKanabus, Joanna, Marcin Bryła, Krystyna Leśnowolska-Wnuczek, Agnieszka Waśkiewicz, and Magdalena Twarużek. 2026. "Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment" Toxins 18, no. 1: 20. https://doi.org/10.3390/toxins18010020
APA StyleKanabus, J., Bryła, M., Leśnowolska-Wnuczek, K., Waśkiewicz, A., & Twarużek, M. (2026). Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment. Toxins, 18(1), 20. https://doi.org/10.3390/toxins18010020

