Identifying Causative Agents of a Paretic Syndrome in Waterbirds in Southern Portugal
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Area and Waterbird Groups
5.2. Botulinum Neurotoxin Analysis
5.3. Algal and Cyanobacterial Toxin Analysis
5.4. Virus Analysis
5.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balk, L.; Hägerroth, P.; Åkerman, G.; Hanson, M.; Tjärnlund, U.; Hansson, T.; Hallgrimsson, G.T.; Zebühr, Y.; Broman, D.; Mörner, T.; et al. Wild birds of declining European species are dying from a thiamine deficiency syndrome. Proc. Natl. Acad. Sci. USA 2009, 106, 12001–12006. [Google Scholar] [CrossRef] [PubMed]
- Sonne, C.; Alstrup, A.K.; Therkildsen, O.R. A review of the factors causing paralysis in wild birds: Implications for the paralytic syndrome observed in the Baltic Sea. Sci. Total Environ. 2012, 416, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Shearn-Bochsler, V.; Lance, E.W.; Corcoran, R.; Piatt, J.; Bodenstein, B.; Frame, E.; Lawonn, J. Fatal paralytic shellfish poisoning in Kittlitz’s murrelet (Brachyramphus brevirostris) nestlings, Alaska, USA. J. Wildl. Dis. 2014, 50, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Van Hemert, C.; Schoen, S.K.; Litaker, R.W.; Smith, M.M.; Arimitsu, M.L.; Piatt, J.F.; Holland, W.C.; Ransom Hardison, D.; Pearce, J.M. Algal toxins in Alaskan seabirds: Evaluating the role of saxitoxin and domoic acid in a large-scale die-off of common murres. Harmful Algae 2020, 92, 101730. [Google Scholar] [CrossRef] [PubMed]
- Arcos, J.M.; Arizaga, J.; Barros, A.; Fernández-Pajuelo, M.; García, D.; García-Barcelona, S.; López-Jiménez, N.; Martín, G.; Molina, B.; Mas, R.E.; et al. Gaviota patiamarilla, Larus michahellis. In Libro Rojo de Las Aves de España; López-Jiménez, D.N., Ed.; SEO/BirdLife: Madrid, Spain, 2021; pp. 815–816. [Google Scholar]
- Van Hemert, C.; Dusek, R.J.; Smith, M.M.; Kaler, R.; Sheffield, G.; Divine, L.M.; Kuletz, K.J.; Knowles, S.; Lankton, J.S.; Hardison, D.R.; et al. Investigation of algal toxins in a multispecies seabird die-off in the Bering and Chukchi Seas. J. Wildl. Dis. 2021, 57, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Casero, M.V.; Ramos, J.A.; Pereira, L. Seabirds and Toxins. In Seabird Biodiversity and Human Activities; Ramos, J.A., Pereira, L., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Shumway, S.E.; Allen, S.M.; Boersma, P.D. Marine birds and harmful algal blooms: Sporadic victims or under-reported events? Harmful Algae 2003, 2, 1–17. [Google Scholar] [CrossRef]
- Newman, S.; Chmura, A.; Converse, K.; Kilpatrick, A.; Patel, N.; Lammers, E.; Daszak, P. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 2007, 352, 299–309. [Google Scholar] [CrossRef]
- Soliño, L.; Ferrer-Obiol, J.; Navarro-Herrero, L.; González-Solís, J.; Costa, P.R. Are pelagic seabirds exposed to amnesic shellfish poisoning toxins? Harmful Algae 2019, 84, 172–180. [Google Scholar] [CrossRef]
- Ben-Gigirey, B.; Soliño, L.; Bravo, I.; Rodríguez, F.; Casero, M.V. Paralytic and amnesic shellfish toxins impacts on seabirds, analyses and management. Toxins 2021, 13, 454. [Google Scholar] [CrossRef]
- Hesterberg, U.; Harris, K.; Stroud, D.; Guberti, V.; Busani, L.; Pittman, M.; Piazza, V.; Cook, A.; Brown, I. Avian influenza surveillance in wild birds in the European Union in 2006. Influenza Other Respir. Viruses 2009, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Spickler, A.R. Highly Pathogenic Avian Influenza; Center for Food Security and Public Health: Ames, IA, USA, 2016; Available online: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php (accessed on 4 February 2024).
- McFerran, J.B.; Smyth, J.A. Avian adenoviruses. Rev. Sci. Tech. 2000, 19, 589–601. [Google Scholar] [CrossRef]
- Karamendin, K.; Kydyrmanov, A.; Fereidouni, S. High mortality in terns and gulls associated with infection with the novel gull adenovirus. J. Wildl. Dis. 2021, 57, 662–666. [Google Scholar] [CrossRef]
- Leighton, F.A.; Heckert, R.A. Newcastle disease and related avian Paramyxoviruses. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Blackwell Pub: Ames, IA, USA, 2007; pp. 431–455. [Google Scholar]
- Kaleta, E.F.; Docherty, D.E. Avian Herpesviruses. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Blackwell Pub: Ames, IA, USA, 2007; pp. 431–455. [Google Scholar]
- Smayda, T. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In Toxic Marine Phytoplankton; Elsevier: New York, NY, USA, 1990; pp. 29–40. [Google Scholar]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Burkholder, J.M. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol. Appl. 1998, 8, S37–S62. [Google Scholar] [CrossRef]
- Lopez-Rodas, V.; Maneiro, E.; Lanzarot, M.P.; Perdigones, N.; Costas, E. Mass wildlife mortality due to cyanobacteria in the Doñana National Park, Spain. Vet. Rec. 2008, 162, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, J.H.; Lefebvre, K.A.; Flewelling, L.J. Effects of toxic microalgae on marine organisms. In Toxins and Biologically Active Compounds from Microalgae; Rossini, G.P., Ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2014; Volume 2, pp. 379–449. [Google Scholar]
- Gibble, C.M.; Hoover, B.A. Interactions between seabirds and harmful algal blooms. In Harmful Algal Blooms; Wiley: Hoboken, NJ, USA, 2018; pp. 223–242. [Google Scholar] [CrossRef]
- Gibble, C.M.; Kudela, R.M.; Knowles, S.; Bodenstein, B.; Lefebvre, K.A. Domoic acid and saxitoxin in seabirds in the United States between 2007 and 2018. Harmful Algae 2021, 103, 101981. [Google Scholar] [CrossRef]
- Landsberg, J.H.; Vargo, G.A.; Flewelling, L.J.; Wiley, F.E. Algal Toxins. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Blackwell Pub: Ames, IA, USA, 2007; pp. 431–455. [Google Scholar]
- Beyer, W.N.; Meador, J.P. Environmental Contaminants in Biota: Interpreting Tissue Concentrations, 2nd ed.; Beyer, W.N., Meador, J.P., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Jordan, F.T.W. Poultry Diseases, 3rd ed.; Balliere Tindall: Philadelphia, PA, USA; W.B. Saunders Company: Toronto, ON, Canada, 1990; p. 497. [Google Scholar] [CrossRef]
- Rocke, T.E.; Barker, I. Proposed link between paralytic syndrome and thiamine deficiency in Swedish gulls not substantiated. Proc. Natl. Acad. Sci. USA 2010, 107, E14. [Google Scholar] [CrossRef] [PubMed]
- Tillitt, D.E.; Kraft, C.E.; Honeyfield, D.C.; Fitzsimons, J.D. Thiamine deficiency: A viable hypothesis for paralytic syndrome in Baltic birds. Commentary on Sonne et al., 2012. A review of the factors causing paralysis in wild birds: Implications for the paralytic syndrome observed in the Baltic Sea. Sci. Total Environ. 416: 32–39. Sci. Total Environ. 2012, 433, 561–562. [Google Scholar] [CrossRef]
- Rocke, T.E.; Bollinger, T.K. Avian Botulism. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Blackwell Pub: Ames, IA, USA, 2007; pp. 431–455. [Google Scholar]
- León, L.; Miranda, A.M.; Carranza, J.; Perea, A. Intoxicación botulínica en aves acuáticas silvestres en la marisma del Guadalquivir (coto Doñana). Doñana Acta Vertebr. 1978, 1, 121–123. [Google Scholar]
- García Fernandez, A.; León Vizcaíno, L.; Cubero Pablo, M.J.; Contreras de Vera, A. Sobre la baja prevalencia de Clostridium botulinum en humedales de las marismas del Odiel (Huelva). Oxyura 1991, 1, 49–54. [Google Scholar]
- Neimanis, A.; Gavier–Widén, D.; Leighton, F.; Bollinger, T.; Rocke, T.; Mörner, T. An outbreak of type C botulism in herring gulls (Larus argentatus) in Southeastern Sweden. J. Wildl. Dis. 2007, 43, 327–336. [Google Scholar] [CrossRef]
- Anza, I.; Vidal, D.; Feliu, J.; Crespo, E.; Mateo, R. Differences in the vulnerability of waterbird species to botulism outbreaks in Mediterranean wetlands: An assessment of ecological and physiological factors. Appl. Environ. Microbiol. 2016, 82, 3092–3099. [Google Scholar] [CrossRef] [PubMed]
- Le Bouquin, S.; Lucas, C.; Souillard, R.; Le Maréchal, C.; Petit, K.; Kooh, P.; Jourdan-Da Silva, N.; Meurens, F.; Guillier, L.; Mazuet, C. Human and animal botulism surveillance in France from 2008 to 2019. Front. Public Health 2022, 10, 1003917. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Arnal, J.; Marín, C. The latent threat in wild birds: Clostridium botulinum. Vet. Sci. 2024, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Vidal, D.; Anza, I.; Taggart, M.A.; Perez-Ramirez, E.; Crespo, E.; Hofle, U.; Mateo, R. Environmental factors influencing the prevalence of a Clostridium botulinum type C/D mosaic strain in non-permanent Mediterranean wetlands. Appl. Environ. Microbiol. 2013, 79, 4264. [Google Scholar] [CrossRef]
- Anza, I.; Skarin, H.; Vidal, D.; Lindberg, A.; Båverud, V.; Mateo, R. The same clade of Clostridium botulinum strains is causing avian botulism in southern and northern Europe. Anaerobe 2014, 26, 20–23. [Google Scholar] [CrossRef]
- Rocke, T.E.; Friend, M. Avian botulism. In Field Manual of Wildlife Disease. General Procedures and Diseases of Birds; Friend, M., Franso, J.D., Eds.; USGS National Wildlife Health Center: Washington, DC, USA, 1999; pp. 271–281. [Google Scholar]
- Macdonald, J.W.; Standring, K.T. An outbreak of botulism in gulls on the Firth of Forth, Scotland. Biol. Conserv. 1978, 14, 149–155. [Google Scholar] [CrossRef]
- Quinn, P.J.; Crinion, R.A.P. A two-year study of botulism in gulls in the vicinity of Dublin Bay. Ir. Vet. J. 1984, 38, 214–219. [Google Scholar] [CrossRef]
- Gophen, M.; Cohen, A.; Grinberg, K.; Pokamunski, S.; Nili, E.; Wynne, D.; Yawetz, A.; Dotan, A.; Zook-Rimon, Z.; Ben-Shlomo, M.; et al. Implications of botulism outbreaks in gulls (Larus ridibundus) on the Watershed Management of Lake Kinneret (Israel). Environ. Toxicol. 1991, 6, 77–84. [Google Scholar] [CrossRef]
- Hubálek, Z.; Pellantová, J.; Hudec, K.; Halouzka, J.; Chytil, J.; Machácek, P.; Sebela, M.; Kubícek, F. Botulism in birds living in an aquatic environment in Nové Mlýny in the Breclav District. Vet. Med. 1991, 36, 57–63. [Google Scholar]
- Ortiz, N.E.; Smith, G.R. Landfill sites, botulism and gulls. Epidemiol. Infect. 1994, 112, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Rosciano, N.G.; Cossa, N.A.; Farace, M.I.; Ojeda, V.; Seijas, S. Outbreak of type c botulism in aquatic birds on the Nahuel Huapi lake and national park area, Argentina. El Hornero 2021, 36, 71–80. [Google Scholar] [CrossRef]
- Rogers, K.H.; Viera, O.G.; Uzal, F.A.; Peronne, L.; Mete, A. Mortality of Western Gulls (Larus occidentalis) Associated with Botulism Type a in Coastal Southern California, USA. J. Wildl. Dis. 2021, 57, 657–661. [Google Scholar] [CrossRef]
- Lucena, E. Aspectos sanitarios de las cianotoxinas. Hig. Y Sanid. Ambient. 2008, 8, 291–302. [Google Scholar]
- Stewart, I.; Seawright, A.A.; Shaw, G.R. Cyanobacterial poisoning in livestock, wild mammals and birds—An overview. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; pp. 613–637. [Google Scholar]
- Foss, A.J.; Miles, C.O.; Samdal, I.A.; Løvberg, K.E.; Wilkins, A.L.; Rise, F.; Jaabæk, J.A.H.; McGowan, P.C.; Aubel, M.T. Analysis of free and metabolized microcystins in samples following a bird mortality event. Harmful Algae 2018, 80, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Fire, S.E.; Van Dolah, F.M. Marine Toxins: Emergence of Harmful Algal Blooms as Health Threats to Marine Wildlife. In New Directions in Conservation Medicine: Applied Cases in Ecological Health; Aguirre, A.A., Ostfield, R.S., Daszak, P., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 374–389. [Google Scholar]
- Ibelings, B.W.; Foss, A.; Chorus, I. Exposure to cyanotoxins: Understanding it and short term interventions to prevent it. Food. In Toxic Cyanobacteria in Water, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 368–384. [Google Scholar]
- Rattner, B.A.; Wazniak, C.E.; Lankton, J.S.; McGowan, P.C.; Drovetski, S.V.; Egerton, T.A. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay Region. Harmful Algae 2022, 120, 102319. [Google Scholar] [CrossRef]
- Lima, M.J.; Relvas, P.; Barbosa, A.B. Variability patterns and phenology of harmful phytoplankton blooms off southern Portugal: Looking for region-specific environmental drivers and predictors. Harmful Algae 2022, 116, 102254. [Google Scholar] [CrossRef]
- Piatt, J.F.; Parrish, J.K.; Renner, H.M.; Schoen, S.K.; Jones, T.T.; Arimitsu, M.L.; Kuletz, K.J.; Bodenstein, B.; García-Reyes, M.; Duerr, R.S.; et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 2020, 15, e0226087. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.; Lair, S.; Michaud, S.; Scarratt, M.; Quilliam, M.; Lefaivre, D.; Robert, M.; Wotherspoon, A.; Michaud, R.; Ménard, N.; et al. Multispecies mass mortality of marine fauna linked to a toxic dinoflagellate bloom. PLoS ONE 2017, 12, e0176299. [Google Scholar] [CrossRef] [PubMed]
- Mons, M.N.; Van Egmond, H.P.; Speijers, G.J.A. Paralytic Shellfish Poisoning: A Review; RIVM Rapport 388802005; The National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 1998. [Google Scholar]
- Takahashi, S.; Kaya, K. Quail spleen is enlarged by microcystin RR as a blue-green algal hepatotoxin. Nat. Toxins 1993, 1, 283–285. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Xie, P.; Wang, Q.; Ma, Z. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci. Total Environ. 2009, 407, 3317–3322. [Google Scholar] [CrossRef]
- Murphy, T.; Lawson, A.; Nalewajko, C.; Murkin, H.; Ross, L.; Oguma, K.; McIntyre, T. Algal toxins: Initiators of avian botulism? Environ. Toxicol. 2000, 15, 558–567. [Google Scholar] [CrossRef]
- McComb, A.J.; Davis, J.A. Eutrophic waters of southwestern Australia. Fertil. Res. 1993, 36, 105–114. [Google Scholar] [CrossRef]
- Pikula, J.; Bandouchova, H.; Hilscherova, K.; Paskova, V.; Sedlackova, J.; Adamovsky, O.; Knotkova, Z.; Lany, P.; Machat, J.; Marsalek, B.; et al. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. Sci. Total Environ. 2010, 408, 4984–4992. [Google Scholar] [CrossRef] [PubMed]
- Nonga, H.E.; Sandvik, M.; Miles, C.O.; Lie, E.; Mdegela, R.H.; Mwamengele, G.L.; Semuguruka, W.D.; Skaare, J.U. Possible involvement of microcystins in the unexplained mass mortalities of Lesser Flamingo (Phoeniconaias minor Geoffroy) at Lake Manyara in Tanzania. Hydrobiologia 2011, 678, 167–178. [Google Scholar] [CrossRef]
- Honeyfield, D.C.; Hinterkopf, J.P.; Brown, S.B. Isolation of thiaminase-positive bacteria from alewife. Trans. Am. Fish. Soc. 2002, 131, 171–175. [Google Scholar] [CrossRef]
- Sikowitz, M.D.; Shome, B.; Zhang, Y.; Begley, T.P.; Ealick, S.E. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture. Biochemistry 2013, 52, 7830–7839. [Google Scholar] [CrossRef] [PubMed]
- Ringe, H.; Schuelke, M.; Weber, S.; Dorner, B.G.; Kirchner, S.; Dorner, M.B. Infant botulism: Is there an association with thiamine deficiency? Pediatrics 2014, 134, e1436–e1440. [Google Scholar] [CrossRef]
- Henrich, H. Results with vitamin B1 injections in botulism. Med. Klin. 1953, 48, 279. [Google Scholar]
- Ritchie, B.W.; Harrison, G.J. Formulary. In Avian Medicine: Principles and Application; Ritchie, B.W., Harrison, G.J., Harrison, L.R., Eds.; Wingers Publishing: Lake Worth, FL, USA, 1994; pp. 457–478. [Google Scholar]
- Tully, T.N. Therapeutics. In Ratite Management, Medicine, and Surgery; Tully, T.N., Shane, S.M., Eds.; Krieger Publishing: Malabar, FL, USA, 1996; pp. 155–163. [Google Scholar]
- Huckabee, J.R. Raptor therapeutics. Vet. Clin. N. Am. Exot. Anim. Pract. 2000, 3, 91116. [Google Scholar] [CrossRef]
- Carnarius, M.; Hafez, H.M.; Henning, A.; Henning, H.J.; Lierz, M. Clinical signs and diagnosis of thiamine deficiency in juvenile goshawks (Accipiter gentilis). Vet. Rec. 2008, 163, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, C. Falconiformes (falcons, hawks, eagles, kites, harriers, buzzards, ospreys, caracaras, secretary birds, Old World and New World vultures). In Fowler’s Wild Animal Medicine; Miller, R.E., Fowler, M.E., Eds.; Elsevier: St. Louis, MO, USA, 2015; Volume 8, pp. 127–142. [Google Scholar]
- Bailey, T.A.; Apo, M.M. Pharmaceutics commonly used in avian medicine. In Avian Medicine, 3rd ed.; Samour, J., Ed.; Mosby Elsevier: Edinburgh, UK, 2016; pp. 637–678. [Google Scholar]
- Ceia, F.R.; Silva, N.C.; Paiva, V.H.; Morais, L.; Serrão, E.A.; Ramos, J.A. Gulls as indicators of environmental changes in the North Atlantic: A long-term study on Berlenga Island, Western Portugal. Diversity 2023, 15, 1148. [Google Scholar] [CrossRef]
- Camphuysen, C.J.; Wright, P.J.; Leopold, M.; Huppop, O.; Reid, J.B. A review of the causes, and consequences at the population level, of mass mortalities of seabirds. ICES Coop Res. Rep. 1999, 232, 51–66. [Google Scholar]
- Thomas, G.J. A review of gull damage and management methods at nature reserves. Biol. Conserv. 1972, 4, 117–127. [Google Scholar] [CrossRef]
- Smith, G.C.; Carlile, N. Methods for population control within a silver gull colony. Wildl. Res. 1993, 20, 219–225. [Google Scholar] [CrossRef]
- Rock, P. Urban gulls: Problems and solutions. Br. Birds 2005, 98, 338–355. [Google Scholar]
- McKechnie, A.E.; Wolf, B.O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 2009, 6, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Fey, S.B.; Siepielski, A.M.; Nusslé, S.; Cervantes-Yoshida, K.; Hwan, J.L.; Huber, E.R.; Fey, M.J.; Catenazzi, A.; Carlson, S.M. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. USA 2015, 112, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, V.; Santos, M.; Anacleto, P.; Maulvault, A.L.; Pousão-Ferreira, P.; Costa, P.R.; Marques, A. Paralytic shellfish toxins and ocean warming: Bioaccumulation and ecotoxicological responses in juvenile gilthead seabream (Sparus aurata). Toxins 2019, 11, 408. [Google Scholar] [CrossRef]
- Li, X.; Yan, M.; Gu, J.; Lam, V.T.; Wai, T.-C.; Baker, D.M.; Thompson, P.D.; Yiu, S.K.; Lam, P.K.; Leung, P.T. The effect of temperature on physiology, toxicity and toxin content of the benthic dinoflagellate Coolia malayensis from a seasonal tropical region. Water Res. 2020, 185, 116264. [Google Scholar] [CrossRef]
- Nager, R.G.; O’Hanlon, N.J. Changing numbers of three gull species in the British Isles. Waterbirds 2016, 39 (Suppl. S1), 15–28. [Google Scholar] [CrossRef]
- Mouga, T.; Mendes, S.; Franco, I.; Fagundes, A.I.; Oliveira, N.; Crisóstomo, P.; Morais, L.; Afonso, C. Recent efforts to recover Armeria berlengensis, an endemic species from Berlengas Archipelago, Portugal. Plants 2021, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Morner, T.; Obendorf, D.L.; Artois, M.; Woodford, M.H. Surveillance and monitoring of wildlife diseases. Rev. Sci. Tech. L’oie 2002, 21, 67–76. [Google Scholar] [CrossRef]
- Coffield, J.A.; Whelchel, D.D. Botulinum neurotoxin. In Veterinary Toxicology Basic and Clinical Principles; Gupta, R.C., Ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Le Maréchal, C.; Ballan, V.; Rouxel, S.; Bayon-Auboyer, M.H.; Baudouard, M.A.; Morvan, H.; Houard, E.; Poëzevara, T.; Souillard, R.; Woudstra, C.; et al. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism. Anaerobe 2016, 38, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Le Maréchal, C.; Rouxel, S.; Ballan, V.; Houard, E.; Poezevara, T.; Bayon-Auboyer, M.H.; Souillard, R.; Morvan, H.; Baudouard, M.A.; Woudstra, C.; et al. Development and validation of a new reliable method for the diagnosis of avian botulism. PLoS ONE 2017, 12, e0169640. [Google Scholar] [CrossRef]
- Souillard, R.; Grosjean, D.; Le Gratiet, T.; Poezevara, T.; Rouxel, S.; Balaine, L.; Macé, S.; Martin, L.; Anniballi, F.; Chemaly, M.; et al. Asymptomatic carriage of C. botulinum Type D/C in broiler flocks as the source of contamination of a massive botulism outbreak on a dairy cattle farm. Front. Microbiol. 2021, 12, 679377. [Google Scholar] [CrossRef] [PubMed]
- Van De Riet, J.; Gibbs, R.S.; Muggah, P.M.; Rourke, W.A.; MacNeil, J.D.; Quilliam, M.A. Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: Collaborative study. J. AOAC Int. 2011, 94, 1154–1176. [Google Scholar] [CrossRef]
- Turner, A.D.; McNabb, P.S.; Harwood, D.T.; Selwood, A.I.; Boundy, M.J. Single laboratory validation of a multitoxin ultra-performance LC-hydrophilic interaction LC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J. AOAC Int. 2015, 98, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.D.; Boundy, M.J.; Dhanji-Rapkova, M. Development and single-laboratory validation of a liquid chromatography tandem mass spectrometry method for quantitation of tetrodotoxin in mussels and oysters. J. AOAC Int. 2017, 100, 1469–1482. [Google Scholar] [CrossRef]
- Turner, A.D.; Waack, J.; Lewis, A.; Edwards, C.; Lawton, L. Development and single laboratory validation of a UHPLC-MS/MS method for quantitation of microcystins and nodularin in natural water, cyanobacteria, shellfish and algal supplement tablet powders. J. Chromatogr. B 2018, 1074–1075, 111–123. [Google Scholar] [CrossRef]
- Boundy, M.J.; Selwood, A.I.; Harwood, D.T.; McNabb, P.S.; Turner, A.D. Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. J. Chromatogr. A 2015, 1387, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.D.; Dhanji-Rapkova, M.; Fong, S.Y.T.; Hungerford, J.; McNabb, P.S.; Boundy, M.J.; Harwood, D.T. Ultrahigh-performance hydrophilic interaction liquid chromatography with tandem mass spectrometry method for the determination of paralytic shellfish toxins and tetrodotoxin in mussels, oysters, clams, cockles and scallops: Collaborative study. J. AOAC Int. 2020, 103, 533–562. [Google Scholar] [CrossRef] [PubMed]
- Dean, K.J.; Hatfield, R.G.; Turner, A.D. Performance characteristics of refined LC–FLD and HILIC–MS/MS methods for the determination of paralytic shellfish toxins in shrimp, Whelk, and Crab. J. AOAC Int. 2021, 104, 1022–1035. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on marine toxins in shellfish—Domoic acid. EFSA J. 2009, 1181, 12546. [Google Scholar]
- Rourke, W.A.; Murphy, C.J.; Pitcher, G.; Van De Riet, J.M.; Burns, B.G.; Thomas, K.M.; Quilliam, M.A. Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue. J. AOAC Int. 2008, 91, 589–597. [Google Scholar] [CrossRef]
- Rodríguez, F.; Garrido, J.L.; Sobrino, C.; Johnsen, G.; Riobó, P.; Franco, J.; Aamot, I.; Ramilo, I.; Sanz, N.; Kremp, A. Divinyl chlorophyll a in the marine eukaryotic protist Alexandrium ostenfeldii (Dinophyceae). Environ. Microbiol. 2016, 18, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Ben-Gigirey, B.; Rossignoli, A.E.; Riobó, P.; Rodríguez, F. First report of paralytic shellfish toxins in marine invertebrates and fish in Spain. Toxins 2020, 12, 723. [Google Scholar] [CrossRef] [PubMed]
- De La Iglesia, P.D.; Barber, E.; Giménez, G.; Rodríguez-Velasco, M.L.; Villar-González, A.; Diogéne, J. High-throughput analysis of amnesic shellfish poisoning toxins in shellfish by ultra-performance rapid resolution LC-MS/MS. J. AOAC Int. 2011, 94, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Mase, M.; Mitake, H.; Inoue, T.; Imada, T. Identification of group I–III avian adenovirus by PCR coupled with direct sequencing of the hexon gene. J. Vet. Med. Sci. 2009, 71, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Aldous, E.W.; Mynn, J.K.; Banks, J.; Alexander, D.J. A molecular epidemiological study of Avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol. 2003, 32, 239–256. [Google Scholar] [CrossRef]
Etiological Agents | Group of Birds | PS + Group | PS − Group | Total | ||||
---|---|---|---|---|---|---|---|---|
n (p *) | + | n | + | n | + | |||
Toxins | Botulinum neurotoxin | Gulls | 5 (1) | 5 (1) | 11 (2) | 0 | 16 (3) | 5 (1) |
Waders | 6 (1) | 6 (1) | 0 | 0 | 6 (1) | 6 (1) | ||
Ducks and coots | 11 (2) | 11 (2) | 0 | 0 | 11 (2) | 11 (2) | ||
Total | 22 (4) | 22 (4) | 11 (2) | 0 | 33 (6) | 22 (4) | ||
Paralytic shellfish toxins | Gulls | 140 | 4 | 28 | 1 | 168 | 5 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 1 | 8 | 1 | ||
Total | 158 | 4 | 37 | 2 | 195 | 6 | ||
Domoic acid | Gulls | 140 | 0 | 28 | 0 | 168 | 0 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 0 | 8 | 0 | ||
Total | 158 | 0 | 37 | 0 | 195 | 0 | ||
Anatoxins | Gulls | 133 | 0 | 28 | 0 | 161 | 0 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 0 | 8 | 0 | ||
Total | 151 | 0 | 37 | 0 | 188 | 0 | ||
Cylindrospermopsin | Gulls | 133 | 0 | 28 | 0 | 161 | 0 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 0 | 8 | 0 | ||
Total | 151 | 0 | 37 | 0 | 188 | 0 | ||
Tetrodotoxins | Gulls | 133 | 0 | 28 | 0 | 161 | 0 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 0 | 8 | 0 | ||
Total | 151 | 0 | 37 | 0 | 188 | 0 | ||
Microcystins | Gulls | 133 | 7 | 28 | 1 | 161 | 8 | |
Waders | 6 | 1 | 0 | 0 | 6 | 1 | ||
Ducks and coots | 12 | 0 | 1 | 0 | 13 | 0 | ||
Others | 0 | 0 | 8 | 1 | 8 | 1 | ||
Total | 151 | 8 | 37 | 2 | 188 | 10 | ||
Viruses | Adenovirus | Gulls | 17 | 0 | 0 | 0 | 17 | 0 |
Waders | 5 | 0 | 0 | 0 | 5 | 0 | ||
Others | 1 | 0 | 2 | 0 | 3 | 0 | ||
Total | 23 | 0 | 2 | 0 | 25 | 0 | ||
HP avian influenza | Gulls | 130 | 0 | 0 | 0 | 130 | 0 | |
Waders | 2 | 0 | 0 | 0 | 2 | 0 | ||
Ducks and coots | 25 | 0 | 0 | 0 | 25 | 0 | ||
Others | 0 | 0 | 2 | 2 | 2 | 2 | ||
Total | 157 | 0 | 2 | 2 | 159 | 2 | ||
Newcastle virus disease | Gulls | 27 | 0 | 0 | 0 | 27 | 0 | |
Waders | 6 | 0 | 0 | 0 | 6 | 0 | ||
Others | 1 | 0 | 2 | 0 | 3 | 0 | ||
Total | 34 | 0 | 2 | 0 | 36 | 0 |
Group of Birds | Admitted Alive | Admitted Dead | Total |
---|---|---|---|
Gulls | 4917 | 1047 | 5964 |
Ducks and coots | 515 | 1274 | 1789 |
Waders | 85 | 13 | 98 |
Others | 11 | 0 | 11 |
Total | 5528 | 2334 | 7862 |
Etiological Agents/Laboratory | With PS | Without PS | |||
---|---|---|---|---|---|
Samples | Individuals | Samples | Individuals | ||
Toxins | BoNT/Pasteur Institute | 44 | 22 | 22 | 11 |
PSTs/CEFAS and IEO-CSIC | 266 | 158 | 63 | 37 | |
DA/CEFAS and IEO-CSIC | 272 | 158 | 63 | 37 | |
ATX-a/CEFAS | 251 | 151 | 63 | 37 | |
CYN/CEFAS | 251 | 151 | 63 | 37 | |
TTX/CEFAS | 251 | 151 | 63 | 37 | |
MCs/CEFAS | 251 | 151 | 63 | 37 | |
Viruses | HPAI/INIAV | 159 | 159 | 2 | 2 |
NVD/CMV | 44 | 34 | 4 | 2 | |
NGA/CMV | 23 | 23 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena Casero, M.V.; Turner, A.D.; Ben-Gigirey, B.; Alexander, R.P.; Dean, K.J.; Hatfield, R.G.; Maskrey, B.H.; Mazuet, C.; Karamendin, K.; Mateo, R. Identifying Causative Agents of a Paretic Syndrome in Waterbirds in Southern Portugal. Toxins 2025, 17, 62. https://doi.org/10.3390/toxins17020062
Mena Casero MV, Turner AD, Ben-Gigirey B, Alexander RP, Dean KJ, Hatfield RG, Maskrey BH, Mazuet C, Karamendin K, Mateo R. Identifying Causative Agents of a Paretic Syndrome in Waterbirds in Southern Portugal. Toxins. 2025; 17(2):62. https://doi.org/10.3390/toxins17020062
Chicago/Turabian StyleMena Casero, María V., Andrew D. Turner, Begoña Ben-Gigirey, Ryan P. Alexander, Karl J. Dean, Robert G. Hatfield, Benjamin H. Maskrey, Christelle Mazuet, Kobey Karamendin, and Rafael Mateo. 2025. "Identifying Causative Agents of a Paretic Syndrome in Waterbirds in Southern Portugal" Toxins 17, no. 2: 62. https://doi.org/10.3390/toxins17020062
APA StyleMena Casero, M. V., Turner, A. D., Ben-Gigirey, B., Alexander, R. P., Dean, K. J., Hatfield, R. G., Maskrey, B. H., Mazuet, C., Karamendin, K., & Mateo, R. (2025). Identifying Causative Agents of a Paretic Syndrome in Waterbirds in Southern Portugal. Toxins, 17(2), 62. https://doi.org/10.3390/toxins17020062