Snake Venom C-Type Lectin-like Protein Vaa-Snaclec-3/2 Efficiently Prevents Carotid Artery Thrombosis in a Mouse Model Without Compromising Blood Coagulation
Abstract
1. Introduction
2. Results
2.1. Antithrombotic Effects of Vaa-Snaclec-3/2 In Vivo
2.2. Effect of Vaa-Snaclec-3/2 on the Platelet Count
2.3. Effect of Vaa-Snaclec-3/2 on Hemostasis
2.4. Effect of Vaa-Snaclec-3/2 on Hemoglobin Concentration and Hematocrit
2.5. Analysis of Mouse Organs Exposed to Vaa-Snaclec-3/2
2.5.1. Effects of Vaa-Snaclec-3/2 on the Relative Mass of Mouse Organs
2.5.2. Histological Findings in the Vaa-Snaclec-3/2-Treated Mice
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Animals
5.3. Assessment of Antithrombotic Effect in a Mouse Model of Carotid Artery Thrombosis
5.3.1. Dose–Response Study
5.3.2. Experiments with an Effective Dose 100 of Vaa-Snaclec-3/2
Effect of Vaa-Snaclec-3/2 on Thrombus Formation
Effect of Vaa-Snaclec-3/2 on Peripheral Blood Platelet Count
Effect of Vaa-Snaclec-3/2 on Hemostasis
Effects of Vaa-Snaclec-3/2 on Tissues
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CVDs | Cardiovascular diseases |
| Vaa | Vipera a. ammodytes |
| Vbb | Vipera b. berus |
| snaclec | snake venom C-type lectin-like protein |
| vWF | von Willebrand factor |
| FeCl3 | ferric chloride |
| IgG | immunoglobulin G |
| i.v. | intravenously |
| i.p. | intraperitoneal |
| BM | body mass |
| IQRs | interquartile ranges |
| ANOVA | one-way analysis of variance |
| HE | hematoxylin and eosin |
References
- World Heart Federation. World Heart Report 2023. Confronting the World’s Number One Killer; World Heart Federation: Geneva, Switzerland, 2023. [Google Scholar]
- Kini, R.M. Anticoagulant proteins from snake venoms: Structure, function and mechanism. Biochem. J. 2006, 397, 377–387. [Google Scholar] [CrossRef]
- Brvar, M.; Kurtović, T.; Grenc, D.; Lang Balija, M.; Križaj, I.; Halassy, B. Vipera ammodytes bites treated with antivenom ViperaTAb: A case series with pharmacokinetic evaluation. Clin. Toxicol. 2017, 55, 241–248. [Google Scholar] [CrossRef]
- Dobaja Borak, M.; Grenc, D.; Reberšek, K.; Podgornik, H.; Leonardi, A.; Kurtović, T.; Halassy, B.; Križaj, I.; Brvar, M. Reversible and transient thrombocytopenia of functional platelets induced by nose-horned viper venom. Thromb. Res. 2023, 229, 152–154. [Google Scholar] [CrossRef]
- Eble, J.A. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins 2019, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Clemetson, K.J. Reptile Venom C-Type Lectins. In Handbook of Venoms and Toxins of Reptiles, 2nd ed.; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 271–283. [Google Scholar]
- Clemetson, K.J. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 2010, 56, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Nashimoto, Y.; Matsushita, F.; Dijkstra, J.M.; Nakamura, Y.; Akiyama, H.; Hamako, J.; Morita, T.; Araki, S.; Matsui, T. Bitiscetin-3, a Novel C-Type Lectin-like Protein Cloned from the Venom Gland of the Viper Bitis arietans, Induces Platelet Agglutination and Inhibits Binding of Von Willebrand Factor to Collagen. Toxins 2022, 14, 236. [Google Scholar] [CrossRef]
- Zeng, F.Y.; Ji, R.S.; Yu, X.Q.; Li, Y.N.; Zhang, Q.Y.; Sun, Q.Y. A novel snake venom C-type lectin-like protein modulates blood coagulation by targeting von Willebrand factor and coagulation factor IX. Sci. Rep. 2024, 14, 22962. [Google Scholar] [CrossRef]
- Long, C.; Liu, M.; Tian, H.; Li, Y.; Wu, F.; Mwangi, J.; Lu, Q.; Mohamed Abd El-Aziz, T.; Lai, R.; Shen, C. Potential Role of Platelet-Activating C-Type Lectin-Like Proteins in Viper Envenomation Induced Thrombotic Microangiopathy Symptom. Toxins 2020, 12, 749. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.L.; Sachetto, A.T.A.; Rosa, J.G.; Torquato, R.J.S.; Andrade-Silva, D.; Trevisan-Silva, D.; de Albuquerque, C.Z.; Serrano, S.M.T.; de Moura Mattaraia, V.G.; Tanaka, A.S.; et al. Jararaca GPIb-binding protein causes thrombocytopenia during Bothrops jararaca envenomation. Sci. Rep. 2024, 14, 31769. [Google Scholar] [CrossRef]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef]
- Chang, C.H.; Chung, C.H.; Tu, Y.S.; Tsai, C.C.; Hsu, C.C.; Peng, H.C.; Tseng, Y.J.; Huang, T.F. Trowaglerix Venom Polypeptides As a Novel Antithrombotic Agent by Targeting Immunoglobulin-Like Domains of Glycoprotein VI in Platelet. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Kalita, B.; Saviola, A.J.; Samuel, S.P.; Mukherjee, A.K. State-of-the-art review—A review on snake venom-derived antithrombotics: Potential therapeutics for COVID-19-associated thrombosis? Int. J. Biol. Macromol. 2021, 192, 1040–1057. [Google Scholar] [CrossRef]
- Li, B.X.; Dai, X.; Xu, X.R.; Adili, R.; Neves, M.A.D.; Lei, X.; Shen, C.; Zhu, G.; Wang, Y.; Zhou, H.; et al. In vitro assessment and phase I randomized clinical trial of anfibatide a snake venom derived anti-thrombotic agent targeting human platelet GPIbalpha. Sci. Rep. 2021, 11, 11663. [Google Scholar] [CrossRef]
- Leonardi, A.; Sajevic, T.; Pungerčar, J.; Križaj, I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J. Proteome Res. 2019, 18, 2287–2309. [Google Scholar] [CrossRef]
- Dobaja Borak, M.; Leonardi, A.; Požek, K.; Reberšek, K.; Podgornik, H.; Pirnat, A.; Trampuš Bakija, A.; Kranjc Brezar, S.; Trobec, T.; Žužek, M.C.; et al. Reversible Thrombocytopenia of Functional Platelets after Nose-horned Viper Envenomation is Induced by a Snaclec. Thromb. Haemost. 2025, 125, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Yip, J.; Shen, Y.; Berndt, M.C.; Andrews, R.K. Primary platelet adhesion receptors. IUBMB Life 2005, 57, 103–108. [Google Scholar] [CrossRef]
- Bryckaert, M.; Rosa, J.P.; Denis, C.V.; Lenting, P.J. Of von Willebrand factor and platelets. Cell Mol. Life Sci. 2015, 72, 307–326. [Google Scholar] [CrossRef]
- Morowski, M.; Vogtle, T.; Kraft, P.; Kleinschnitz, C.; Stoll, G.; Nieswandt, B. Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood 2013, 121, 4938–4947. [Google Scholar] [CrossRef] [PubMed]
- Jirouskova, M.; Shet, A.S.; Johnson, G.J. A guide to murine platelet structure, function, assays, and genetic alterations. J. Thromb. Haemost. 2007, 5, 661–669. [Google Scholar] [CrossRef]
- Lazic, S.E.; Semenova, E.; Williams, D.P. Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights. Sci. Rep. 2020, 10, 6625. [Google Scholar] [CrossRef]
- Shim, Y.; Kwon, I.; Park, Y.; Lee, H.W.; Kim, J.; Kim, Y.D.; Nam, H.S.; Park, S.; Heo, J.H. Characterization of Ferric Chloride-Induced Arterial Thrombosis Model of Mice and the Role of Red Blood Cells in Thrombosis Acceleration. Yonsei Med. J. 2021, 62, 1032–1041. [Google Scholar] [CrossRef]
- Sakurai, Y.; Fujimura, Y.; Kokubo, T.; Imamura, K.; Kawasaki, T.; Handa, M.; Suzuki, M.; Matsui, T.; Titani, K.; Yoshioka, A. The cDNA cloning and molecular characterization of a snake venom platelet glycoprotein Ib-binding protein, mamushigin, from Agkistrodon halys blomhoffii venom. Thromb. Haemost. 1998, 79, 1199–1207. [Google Scholar] [CrossRef]
- Gailani, D.; Cheng, Q.F.; Ivanov, I.S. Murine Models in the Evaluation of Heparan Sulfate-Based Anticoagulants. Methods Mol. Biol. 2015, 1229, 483–496. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020, 16, 242. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.E.A.; Brattelid, T. PREPARE: Guidelines for planning animal research and testing. Lab. Anim. 2018, 52, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ogrizek, M.; Grgurevič, N.; Snoj, T.; Majdič, G. Injections to pregnant mice produce prenatal stress that affects aggressive behavior in their adult male offspring. Horm. Behav. 2018, 106, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Q.; Xu, L.; Feuerstein, G.Z.; Hsu, M.Y.; Smith, P.L.; Seiffert, D.A.; Schumacher, W.A.; Ogletree, M.L.; Gailani, D. Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J. Thromb. Haemost. 2005, 3, 695–702. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L. An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis research. Thromb. Res. 2005, 115, 95–100. [Google Scholar] [CrossRef]





| n | Mean | ±S.E.M. | p | |
|---|---|---|---|---|
| Liver | ||||
| Control | 8 | 4.325 | 0.105 | p = 0.329 |
| Vaa-snaclec-3/2 | 8 | 4.150 | 0.135 | |
| Heart | ||||
| Control | 8 | 0.543 | 0.0176 | p = 0.094 |
| Vaa-snaclec-3/2 | 8 | 0.504 | 0.0142 | |
| Lungs | ||||
| Control | 8 | 0.513 | 0.00715 | p = 0.055 |
| Vaa-snaclec-3/2 | 8 | 0.550 | 0.0155 | |
| Spleen | ||||
| Control | 8 | 0.325 | 0.0129 | p = 0.612 |
| Vaa-snaclec-3/2 | 8 | 0.334 | 0.0129 | |
| Left kidney | ||||
| Control | 8 | 0.786 | 0.0145 | p = 0.612 |
| Vaa-snaclec-3/2 | 8 | 0.751 | 0.0262 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žužek, M.C.; Križaj, I.; Brvar, M.; Trobec, T.; Kranjc Brezar, S.; Dobaja Borak, M.; Leonardi, A.; Požek, K.; Vrecl, M.; Frangež, R. Snake Venom C-Type Lectin-like Protein Vaa-Snaclec-3/2 Efficiently Prevents Carotid Artery Thrombosis in a Mouse Model Without Compromising Blood Coagulation. Toxins 2025, 17, 523. https://doi.org/10.3390/toxins17110523
Žužek MC, Križaj I, Brvar M, Trobec T, Kranjc Brezar S, Dobaja Borak M, Leonardi A, Požek K, Vrecl M, Frangež R. Snake Venom C-Type Lectin-like Protein Vaa-Snaclec-3/2 Efficiently Prevents Carotid Artery Thrombosis in a Mouse Model Without Compromising Blood Coagulation. Toxins. 2025; 17(11):523. https://doi.org/10.3390/toxins17110523
Chicago/Turabian StyleŽužek, Monika C., Igor Križaj, Miran Brvar, Tomaž Trobec, Simona Kranjc Brezar, Mojca Dobaja Borak, Adrijana Leonardi, Kity Požek, Milka Vrecl, and Robert Frangež. 2025. "Snake Venom C-Type Lectin-like Protein Vaa-Snaclec-3/2 Efficiently Prevents Carotid Artery Thrombosis in a Mouse Model Without Compromising Blood Coagulation" Toxins 17, no. 11: 523. https://doi.org/10.3390/toxins17110523
APA StyleŽužek, M. C., Križaj, I., Brvar, M., Trobec, T., Kranjc Brezar, S., Dobaja Borak, M., Leonardi, A., Požek, K., Vrecl, M., & Frangež, R. (2025). Snake Venom C-Type Lectin-like Protein Vaa-Snaclec-3/2 Efficiently Prevents Carotid Artery Thrombosis in a Mouse Model Without Compromising Blood Coagulation. Toxins, 17(11), 523. https://doi.org/10.3390/toxins17110523

