Do Diagnostic Nerve Blocks Affect the Starting Dose of Botulinum Neurotoxin Type A for Spasticity? A Case-Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. DNB Procedures
5.3. BoNT-A Treatment
5.4. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunnerhagen, K.S.; Opheim, A.; Alt Murphy, M. Onset, time course and prediction of spasticity after stroke or traumatic brain injury. Ann. Phys. Rehabil. Med. 2019, 62, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Tamburin, S.; Filippetti, M.; Mantovani, E.; Smania, N.; Picelli, A. Spasticity following brain and spinal cord injury: Assessment and treatment. Curr. Opin. Neurol. 2022, 6, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Baude, M.; Nielsen, J.B.; Gracies, J.M. The neurophysiology of deforming spastic paresis: A revised taxonomy. Ann. Phys. Rehabil. Med. 2019, 62, 426–430. [Google Scholar] [CrossRef]
- Brandenburg, J.E.; Rabatin, A.E.; Driscoll, S.W. Spasticity Interventions: Decision-Making and Management. Pediatr. Clin. N. Am. 2023, 70, 483–500. [Google Scholar] [CrossRef]
- Yelnik, A.P.; Hentzen, C.; Cuvillon, P.; Allart, E.; Bonan, I.V.; Boyer, F.C.; Coroian, F.; Genet, F.; Honore, T.; Jousse, M.; et al. French clinical guidelines for peripheral motor nerve blocks in a PRM setting. Ann. Phys. Rehabil. Med. 2019, 4, 252–264. [Google Scholar] [CrossRef]
- Winston, P.; Reebye, R.; Picelli, A.; David, R.; Boissonnault, E. Recommendations for Ultrasound Guidance for Diagnostic Nerve Blocks for Spasticity. What Are the Benefits? Arch. Phys. Med. Rehabil. 2023, 9, 1539–1548. [Google Scholar] [CrossRef]
- Deltombe, T.; De Wispelaere, J.F.; Gustin, T.; Jamart, J.; Hanson, P. Selective blocks of the motor nerve branches to the soleus and tibialis posterior muscles in the management of the spastic equinovarus foot. Arch. Phys. Med. Rehabil. 2004, 85, 54–58. [Google Scholar] [CrossRef]
- Genet, F.; Schnitzler, A.; Droz-Bartholet, F.; Salga, M.; Tatu, L.; Debaud, C.; Denormandie, P.; Parratte, B. Successive motor nerve blocks to identify the muscles causing a spasticity pattern: Example of the arm flexion pattern. J. Anat. 2017, 230, 106–116. [Google Scholar] [CrossRef]
- Deltombe, T.; Lejeune, T.; Gustin, T. Botulinum toxin type A or selective neurotomy for treating focal spastic muscle overactivity? Ann. Phys. Rehabil. Med. 2019, 62, 220–224. [Google Scholar] [CrossRef]
- Deltombe, T.; Wautier, D.; De Cloedt, P.; Fostier, M.; Gustin, T. Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group. J. Rehabil. Med. 2017, 49, 461–468. [Google Scholar] [CrossRef]
- Francisco, G.E.; McGuire, J.R. Poststroke spasticity management. Stroke 2012, 11, 3132–3136. [Google Scholar] [CrossRef] [PubMed]
- Filippetti, M.; Tamburin, S.; Di Censo, R.; Adamo, M.; Manera, E.; Ingrà, J.; Mantovani, E.; Facciorusso, S.; Battaglia, M.; Baricich, A.; et al. Role of Diagnostic Nerve Blocks in the Goal-Oriented Treatment of Spasticity with Botulinum Toxin Type A: A Case-Control Study. Toxins 2024, 16, 258. [Google Scholar] [CrossRef]
- Otero-Romero, S.; Sastre-Garriga, J.; Comi, G.; Hartung, H.P.; Soelberg Sørensen, P.; Thompson, A.J.; Vermersch, P.; Gold, R.; Montalban, X. Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper. Mult. Scler. 2016, 11, 1386–1396. [Google Scholar] [CrossRef]
- Dressler, D.; Bhidayasiri, R.; Bohlega, S.; Chahidi, A.; Chung, T.M.; Ebke, M.; Jacinto, L.J.; Kaji, R.; Koçer, S.; Kanovsky, P.; et al. Botulinum toxin therapy for treatment of spasticity in multiple sclerosis: Review and recommendations of the IAB-Interdisciplinary Working Group for Movement Disorders task force. J. Neurol. 2017, 1, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Baricich, A.; Battaglia, M.; Cuneo, D.; Cosenza, L.; Millevolte, M.; Cosma, M.; Filippetti, M.; Dalise, S.; Azzollini, V.; Chisari, C.; et al. Clinical efficacy of botulinum toxin type A in patients with traumatic brain injury, spinal cord injury, or multiple sclerosis: An observational longitudinal study. Front. Neurol. 2023, 14, 1133390. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 19, 1818–1826. [Google Scholar] [CrossRef]
- Kara, M.; Kaymak, B.; Ulaşli, A.M.; Tok, F.; Öztürk, G.T.; Chang, K.V.; Hsiao, M.Y.; Hung, C.Y.; Yağiz On, A.; Özçakar, L. Sonographic guide for botulinum toxin injections of the upper limb: EUROMUSCULUS/USPRM spasticity approach. Eur. J. Phys. Rehabil. Med. 2018, 54, 469–485. [Google Scholar] [CrossRef]
- Kaymak, B.; Kara, M.; Tok, F.; Ulaşli, A.M.; Öztürk, G.T.; Chang, K.V.; Hsiao, M.Y.; Hung, C.Y.; Yağiz On, A.; Özçakar, L. Sonographic guide for botulinum toxin injections of the lower limb: EUROMUSCULUS/USPRM spasticity approach. Eur. J. Phys. Rehabil. Med. 2018, 54, 486–498. [Google Scholar] [CrossRef]
- Asimakidou, E.; Sidiropoulos, C. A Bayesian Network Meta-Analysis and Systematic Review of Guidance Techniques in Botulinum Toxin Injections and Their Hierarchy in the Treatment of Limb Spasticity. Toxins 2023, 15, 256. [Google Scholar] [CrossRef]
- Biering-Soerensen, B.; Stevenson, V.; Bensmail, D.; Grabljevec, K.; Martínez Moreno, M.; Pucks-Faes, E.; Wissel, J.; Zampolini, M. European expert consensus on improving patient selection for the management of disabling spasticity with intrathecal baclofen and/or botulinum toxin type A. J. Rehabil. Med. 2022, 54, jrm00241. [Google Scholar] [CrossRef]
- Newsome, S.D.; Thrower, B.; Hendin, B.; Danese, S.; Patterson, J.; Chinnapongse, R. Symptom burden, management and treatment goals of people with MS spasticity: Results from SEEN-MSS, a large-scale, self-reported survey. Mult. Scler. Relat. Disord. 2022, 68, 104376. [Google Scholar] [CrossRef]
- Choi, K.; Peters, J.; Tri, A.; Chapman, E.; Sasaki, A.; Ismail, F.; Boulias, C.; Reid, S.; Phadke, C.P. Goals Set by Patients Using the ICF Model before Receiving Botulinum Injections and Their Relation to Spasticity Distribution. Physiother. Can. 2017, 2, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Suputtitada, A.; Chatromyen, S.; Chen, C.P.C.; Simpson, D.M. Best Practice Guidelines for the Management of Patients with Post-Stroke Spasticity: A Modified Scoping Review. Toxins 2024, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; Balbert, A.; Bavikatte, G.; Bensmail, D.; Carda, S.; Deltombe, T.; Draulans, N.; Escaldi, S.; Gross, R.; Jacinto, J.; et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J. Rehabil. Med. 2021, 53, jrm00134. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins 2016, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Patel, A.T.; Alfaro, A.; Ayyoub, Z.; Charles, D.; Dashtipour, K.; Esquenazi, A.; Graham, G.D.; McGuire, J.R.; Odderson, I. OnabotulinumtoxinA Injection for Poststroke Upper-Limb Spasticity: Guidance for Early Injectors from a Delphi Panel Process. PM&R 2017, 9, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Jost, W.H.; Reissig, A.; Zakine, B.; Bakheit, A.M.; Wissel, J. Classification of posture in poststroke upper limb spasticity: A potential decision tool for botulinum toxin A treatment? Int. J. Rehabil. Res. 2012, 35, 227–233. [Google Scholar] [CrossRef]
- Esquenazi, A.; Alfaro, A.; Ayyoub, Z.; Charles, D.; Dashtipour, K.; Graham, G.D.; McGuire, J.R.; Odderson, I.R.; Patel, A.T.; Simpson, D.M. OnabotulinumtoxinA for Lower Limb Spasticity: Guidance from a Delphi Panel Approach. PM&R 2017, 9, 960–968. [Google Scholar]
- Worldwide Education and Awareness for Movement Disorders EDITION 3.0. Available online: www.mdvu.org (accessed on 1 July 2024).
- Picelli, A.; Battistuzzi, E.; Filippetti, M.; Modenese, A.; Gandolfi, M.; Munari, D.; Smania, N. Diagnostic nerve block in prediction of outcome of botulinum toxin treatment for spastic equinovarus foot after stroke: A retrospective observational study. J. Rehabil. Med. 2020, 52, jrm00069. [Google Scholar] [CrossRef]
- Esquenazi, A.; Lee, S.; Mayer, N.; Garreta, R.; Patel, A.; Elovic, E.; Koelbel, S.; Francisco, G.; Reuter, I.; PROS World Group. Patient Registry of Spasticity Care World: Data Analysis Based on Physician Experience. Am. J. Phys. Med. Rehabil. 2017, 96, 881–888. [Google Scholar] [CrossRef]
- Filippetti, M.; Di Censo, R.; Varalta, V.; Baricich, A.; Santamato, A.; Smania, N.; Picelli, A. Is the outcome of diagnostic nerve block related to spastic muscle echo intensity? A retrospective observational study on patients with spastic equinovarus foot. J. Rehabil. Med. 2022, 54, jrm00275. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, S.; Spina, S.; Gasperini, G.; Picelli, A.; Filippetti, M.; Molteni, F.; Santamato, A. Anatomical landmarks for ultrasound-guided rectus femoris diagnostic nerve block in post-stroke spasticity. Australas. J. Ultrasound Med. 2023, 4, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Chang, K.V.; Özçakar, L.; Hsiao, M.Y.; Hung, C.Y.; Shyu, S.G.; Wang, T.G.; Chen, W.S. Sonographic tracking of the upper limb peripheral nerves: A pictorial essay and video demonstration. Am. J. Phys. Med. Rehabil. 2015, 94, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.Y.; Hsiao, M.Y.; Özçakar, L.; Chang, K.V.; Wu, C.H.; Wang, T.G.; Chen, W.S. Sonographic Tracking of the Lower Limb Peripheral Nerves: A Pictorial Essay and Video Demonstration. Am. J. Phys. Med. Rehabil. 2016, 95, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhuo, L.; Zhang, X.; Yang, S. Localization of nerve entry points as targets to block spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 2017, 30, 855–860. [Google Scholar] [CrossRef]
Group 1 (DNB + Clinical Assessment, n = 43) | Group 2 (Clinical Assessment Only, n = 56) | p | |
---|---|---|---|
Demographic | |||
Age, year | 56.5 ± 16.9 | 56.7 ± 14.5 | 0.95 |
Male % | 62.8 | 58.9 | 0.70 |
Clinical | |||
Cause of spasticity | 0.38 | ||
Ischemic stroke, % | 34.9 | 39.3 | |
Hemorrhagic stroke, % | 9.3 | 5.4 | |
Multiple sclerosis, % | 20.9 | 23.2 | |
CP, % | 18.6 | 5.4 | |
SCI, % | 0.0 | 8.9 | |
TBI, % | 7.0 | 5.4 | |
Other, % | 9.3 | 12.5 | |
BoNT-A treatment | 0.40 | ||
Onabotulinumtoxin-A, % | 32.6 | 30.4 | |
Incobotulinumtoxin-A, % | 25.6 | 16.1 | |
Abobotulinumtoxin-A, % | 41.8 | 53.5 | |
Total BoNT-A dose, U * | 245.5 ± 153.1 | 279.7 ± 137.6 | 0.25 |
Upper limb BoNT-A dose, U * | 155.1 ± 82.0 | 201.0 ± 102.4 | 0.07 |
Lower limb BoNT-A dose, U * | 229.6 ± 118.5 | 224.0 ± 109.6 | 0.84 |
Injected muscles, number | 3.8 ± 1.9 | 4.1 ± 2.4 | 0.51 |
Muscle injected upper limb, number | 2.9 ± 1.2 | 3.3 ± 1.6 | 0.29 |
Muscle injected lower limb, number | 3.4 ± 1.7 | 3.0 ± 1.6 | 0.40 |
Muscle | Group 1 (DNB + Clinical Assessment) | Group 2 (Clinical Assessment Only) | p Dose | ||
---|---|---|---|---|---|
n | Dose | n | Dose | ||
Pectoralis major | 9 | 79.6 ± 23.2 | 6 | 75.0 ± 27.4 | 0.74 |
Biceps brachii | 8 | 95.8 ± 45.2 | 5 | 80.0 ± 32.0 | 0.48 |
Brachialis | 10 | 73.3 ± 19.6 | 7 | 79.8 ± 10.6 | 0.40 |
Brachioradialis | 0 | - | 4 | 58.3 ± 20.4 | - |
Pronator teres | 0 | - | 2 | 50.0 ± 0.0 | - |
Flexor carpi radialis | 8 | 52.1 ± 20.8 | 10 | 50.0 ± 16.7 | 0.82 |
Flexor carpi ulnaris | 8 | 43.7 ± 8.6 | 8 | 51.9 ± 16.7 | 0.25 |
Flexor digitorum profundus | 13 | 66.7 ± 24.5 | 7 | 45.2 ± 13.5 | 0.02 * |
Flexor digitorum superficialis | 22 | 71.6 ± 38.2 | 13 | 57.7 ± 17.5 | 0.15 |
Flexor pollicis longus | 14 | 42.5 ± 22.0 | 5 | 31.7 ± 10.9 | 0.18 |
Opponens | 5 | 20.3 ± 6.8 | 3 | 19.4 ± 4.8 | 0.84 |
Lumbricalis | 2 | 45.0 ± 7.1 | 3 | 40.0 ± 20.0 | 0.72 |
Muscle | Group 1 (DNB + Clinical Assessment) | Group 2 (Clinical Assessment Only) | p | ||
---|---|---|---|---|---|
n | Dose | n | Dose | ||
Gracilis | 6 | 63.9 ± 45.2 | 6 | 56.9 ± 20.0 | 0.74 |
Adductor longus | 5 | 83.3 ± 37.3 | 2 | 41.7 ± 0.0 | 0.07 |
Ileopsoas | 1 | 100.0 ± 0.0 | 1 | 100.0 ± 0.0 | - |
Medial hamstrings | 0 | - | 7 | 76.1 ± 8.8 | - |
Rectus femoris | 13 | 89.1 ± 14.6 | 3 | 91.7 ± 14.4 | 0.80 |
Gastrocnemius medialis | 21 | 71.8 ± 18.7 | 21 | 76.6 ± 17.6 | 0.40 |
Gastrocnemius lateralis | 23 | 73.2 ± 18.8 | 23 | 79.71 ± 18.6 | 0.24 |
Soleus | 26 | 102.6 ± 24.1 | 13 | 87.2 ± 17.9 | 0.03 * |
Tibialis posterior | 13 | 71.1 ± 11.1 | 5 | 68.3 ± 17.1 | 0.74 |
Flexor digitorum longus | 10 | 59.2 ± 51.9 | 2 | 62.5 ± 17.7 | 0.88 |
Flexor hallucis longus | 10 | 40.8 ± 13.9 | 2 | 50.0 ± 0.0 | 0.07 |
Flexor digitorum brevis | 0 | - | 5 | 14.3 ± 6.2 | - |
Extensor hallucis longus | 2 | 50.0 ± 0.0 | 1 | 50.0 ± 0.0 | - |
Pattern | Group 1 (DNB + Clinical Assessment) | Group 2 (Clinical Assessment Only) | p Dose | p Muscles | ||||
---|---|---|---|---|---|---|---|---|
n | Dose | Muscles | n | Dose | Muscles | |||
Adducted shoulder | 9 | 79.6 ± 23.2 | 1.0 ± 0.0 | 6 | 75.0 ± 27.4 | 1.0 ± 0.0 | 0.74 | - |
Flexed elbow | 15 | 100.1 ± 48.3 | 1.3 ± 0.6 | 12 | 99.3 ± 43.5 | 1.3 ± 0.6 | 0.97 | 0.79 |
Clenched fist | 22 | 142.7 ± 77.7 | 2.5 ± 0.7 | 16 | 80.2 ± 35.7 | 1.8 ± 0.7 | 0.01 * | 0.01 * |
Flexed wrist | 10 | 85.2 ± 24.2 | 1.8 ± 0.4 | 9 | 91.5 ± 40.8 | 1.8 ± 0.4 | 0.69 | 0.91 |
Flexed fingers | 22 | 110.9 ± 56.7 | 1.7 ± 0.5 | 15 | 71.1 ± 27.4 | 1.4 ± 0.5 | 0.01 * | 0.07 |
Thumb in palm | 18 | 38.7 ± 25.0 | 1.1 ± 0.2 | 7 | 31.0 ± 14.2 | 1.1 ± 0.4 | 0.34 | 0.59 |
Adducted thigh | 7 | 128.4 ± 82.7 | 1.7 ± 0.5 | 14 | 75.5 ± 15.1 | 1.2 ± 0.4 | 0.03 * | 0.04 * |
Flexed knee | 6 | 63.9 ± 45.2 | 1.0 ± 0.0 | 6 | 56.9 ± 20.0 | 1.0 ± 0.0 | 0.74 | - |
Extended knee | 13 | 89.1 ± 14.6 | 1.00 ± 0.0 | 3 | 91.7 ± 14.4 | 1.0 ± 0.0 | 0.80 | - |
Equinovarus foot | 39 | 202.2 ± 104.5 | 2.7 ± 1.3 | 25 | 205.7 ± 62.3 | 2.6 ± 0.7 | 0.87 | 0.84 |
Flexed toes | 10 | 86.9 ± 29.1 | 2.0 ± 0.0 | 5 | 55.2 ± 43.6 | 1.4 ± 0.5 | 0.19 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippetti, M.; Tamburin, S.; Di Censo, R.; Aldegheri, R.; Mantovani, E.; Spina, S.; Battaglia, M.; Baricich, A.; Santamato, A.; Smania, N.; et al. Do Diagnostic Nerve Blocks Affect the Starting Dose of Botulinum Neurotoxin Type A for Spasticity? A Case-Control Study. Toxins 2024, 16, 388. https://doi.org/10.3390/toxins16090388
Filippetti M, Tamburin S, Di Censo R, Aldegheri R, Mantovani E, Spina S, Battaglia M, Baricich A, Santamato A, Smania N, et al. Do Diagnostic Nerve Blocks Affect the Starting Dose of Botulinum Neurotoxin Type A for Spasticity? A Case-Control Study. Toxins. 2024; 16(9):388. https://doi.org/10.3390/toxins16090388
Chicago/Turabian StyleFilippetti, Mirko, Stefano Tamburin, Rita Di Censo, Roberto Aldegheri, Elisa Mantovani, Stefania Spina, Marco Battaglia, Alessio Baricich, Andrea Santamato, Nicola Smania, and et al. 2024. "Do Diagnostic Nerve Blocks Affect the Starting Dose of Botulinum Neurotoxin Type A for Spasticity? A Case-Control Study" Toxins 16, no. 9: 388. https://doi.org/10.3390/toxins16090388
APA StyleFilippetti, M., Tamburin, S., Di Censo, R., Aldegheri, R., Mantovani, E., Spina, S., Battaglia, M., Baricich, A., Santamato, A., Smania, N., & Picelli, A. (2024). Do Diagnostic Nerve Blocks Affect the Starting Dose of Botulinum Neurotoxin Type A for Spasticity? A Case-Control Study. Toxins, 16(9), 388. https://doi.org/10.3390/toxins16090388