Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview
Abstract
:1. Introduction
2. Results Sections
2.1. Selected Studies
2.2. Favorable Effects of Bee Venom in Patients with Bone Fractures in Clinical Situations
2.3. Administration of Bee Venom as an Injectable
3. Discussion
3.1. Potential Therapeutic Alternatives for Fracture Recovery
3.2. Potential Mechanisms Through Which Bee Venom May Aid in Fracture Recovery
3.2.1. Melittin
3.2.2. IL-6 and IL-1α
3.2.3. IL-1 and TNF-α
3.2.4. TGF-β and VEGF
4. Conclusions
5. Methods
5.1. Data Sources
5.2. Categorization of Studies
5.3. AI Language Model Usage
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, C.M. Apitherapy—Bee venom therapy. In Biotherapy-History, Principles and Practice: A Practical Guide to the Diagnosis and Treatment of Disease Using Living Organisms; Springer: Berlin/Heidelberg, Germany, 2013; pp. 77–112. [Google Scholar]
- Sung, S.-H.; Kim, J.-W.; Han, J.-E.; Shin, B.-C.; Park, J.-K.; Lee, G. Animal venom for medical usage in pharmacopuncture in korean medicine: Current status and clinical implication. Toxins 2021, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.S. A Review of Domestic and International Clinical Research Trends on Pharmacopuncture Treatment for Fractures. J. Physiol. Pathol. Korean Med. 2023, 37, 185–192. [Google Scholar] [CrossRef]
- Karanam, S.R.; Srinivas, Y.; Chakravarty, S. A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery. Int. J. Healthc. Manag. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Bigham-Sadegh, A.; Oryan, A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int. Wound J. 2015, 12, 238–247. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Li, N.; Li, J.; Zhang, L. Chronic pain after bone fracture: Current insights into molecular mechanisms and therapeutic strategies. Brain Sci. 2022, 12, 1056. [Google Scholar] [CrossRef]
- Sprague, S.M.; Lutz, K.B.; Bryant, D.; Farrokhyar, F.; Zlowodzki, M.; Bhandari, M.M. Complementary and alternative medicine use in patients with fractures. Clin. Orthop. Relat. Res. 2007, 463, 173–178. [Google Scholar] [CrossRef]
- Yazdi, N.; Salehi, M.; Ghorat, F.; Hashempur, M.H. Exploring Traditional and Complementary Medicine Approaches for Fractured Bones: A Systematic Review: Traditional and Complementary Medicine for Fractured Bones. Galen Med. J. 2024, 13, e3227. [Google Scholar] [CrossRef]
- Ali, M. Studies on bee venom and its medical uses. Int. J. Adv. Res. Technol. 2012, 1, 69–83. [Google Scholar]
- Xu, Y.; Hanlon, P.; Rael, E.; Gasanoff, E. Bee venom melittin modulates phospholipase A2 activity by affecting substrate interface on the surface of phosphatidylcholine membrane. Ann. Toxicol. 2020, 2, 26–35. [Google Scholar]
- Zhang, S.; Liu, Y.; Ye, Y.; Wang, X.-R.; Lin, L.-T.; Xiao, L.-Y.; Zhou, P.; Shi, G.-X.; Liu, C.-Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018, 148, 64–73. [Google Scholar] [CrossRef]
- Lee, S.N.; Hong, S.Y.; Byun, I.J.; Ahn, K.H.; Kwon, S.J.; Song, W.S.; Kang, M.S.; Song, H.S.; Kim, K.H. The clinical study on Bee Venom acupuncture treatment of patient with thoracolumbar compression fracture. J. Acupunct. Res. 2002, 19, 35–48. [Google Scholar]
- Yang, K.-R.; Song, H.-S. Effect of Bee Venom Acupuncture complex therapy of thoracolumbar compression fracture. J. Acupunct. Res. 2008, 25, 29–39. [Google Scholar]
- Oh, S.J.; Kim, J.S.; Lee, Y.K.; Lim, S.C.; Lee, H.J. Effects of pharmacopuncture and Danggwisu-powder for lateral malleolus avulsion fracture: A case report. Acupunct. 2015, 32, 203–210. [Google Scholar] [CrossRef]
- Ahn, T.-S.; Moon, J.-H.; Park, C.-Y.; Oh, M.-J.; Choi, Y.-M. The effectiveness of ultrasound-guided essential bee venom pharmacopuncture combined with integrative Korean medical treatment for rib fracture: A case study. J. Korean Med. Rehabil. 2019, 29, 157–163. [Google Scholar] [CrossRef]
- Park, K.; Shin, H.-R.; An, S.-H.; Yeom, S.-R.; Kwon, Y.-D. The Clinical Effects of Complex Korean Medicine Treatment in Patient with Delayed Union of the 4th Toe Distal Phalanx Fracture. J. Korean Med. Rehabil. 2019, 29, 143–149. [Google Scholar] [CrossRef]
- An, S.-H.; Jeong, Y.-J.; Yeom, S.-R.; Kwon, Y.-D. The Clinical Effects of Complex Korean Medicine Treatment in Patient with Avulsion Fracture of the Proximal 5th Metatarsal. J. Korean Med. Rehabil. 2021, 31, 109–114. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Hsieh, C.-L. Clinical applications of bee venom acupoint injection. Toxins 2020, 12, 618. [Google Scholar] [CrossRef]
- Chae, S.U.; Jo, S.J.; Bin Lee, C.; Lee, S.; Park, J.-H.; Jung, J.-S.; Park, E.-S.; Bae, H.; Bae, S.K. Pharmacokinetics and Tissue Distribution of Bee Venom-Derived Phospholipase A2 Using a Sandwich ELISA after Subcutaneous Injection of New Composition Bee Venom in Rats. Int. J. Mol. Sci. 2023, 24, 10214. [Google Scholar] [CrossRef]
- Chang, M.C. Persistent severe muscle pain following mistakenly injected high-dose bee venom: A care-compliant case report. Medicine 2022, 101, e32180. [Google Scholar] [CrossRef]
- Yousefpoor, Y.; Osanloo, M.; Mirzaei-Parsa, M.J.; Najafabadi, M.R.H.; Hashemi, S.M.; Abbasifard, M. Subcutaneous Injection of Bee Venom in Wistar Rats: Effects on blood cells and biochemical parameters. J. Pharmacopunct. 2022, 25, 250–257. [Google Scholar] [CrossRef]
- Mukhametov, U.F.; Lyulin, S.V.; Borzunov, D.Y.; Gareev, I.F. Clinical use of bone morphogenetic proteins BMP-2 and BMP-7: Analysis of current clinical trials. HERALD North-West. State Med. Univ. Named After II Mechnikov 2023, 15, 5–20. [Google Scholar] [CrossRef]
- Alhalabi, L.; Zenati, M. The effect of bone morphogenetic proteins BMP in comparison with A Xenograft in the management of bone defects. Glob. J. Med. Clin. Case Rep. 2023, 10, 35–41. [Google Scholar]
- Runzer, C.; Sadowska, J.; Plank, C.; O’Brien, F.; van Griensven, M.; Balmayor, E. Transfection of hmscs with chemically modified mrna coding for bmp-7 enhances osteogenesis. Orthop. Proc. 2024, 106, 89. [Google Scholar] [CrossRef]
- Ali, A.; Mukhtar, M.; Shaheen, S.; Osman, A.M. Bone Morphogenetic Protein (BMP-2/BMP-7) Heterodimer and BMPR1A, BMPR2 Polymorphism in Simple Fractures among Sudanese Patients. Open Access Maced. J. Med. Sci. 2023, 11, 195–199. [Google Scholar] [CrossRef]
- Yang, G.; Liu, K.; Ma, S.; Qi, P. PPARγ inhibition promotes osteogenic differentiation of bone marrow mesenchymal stem cells and fracture healing. J. Cell. Biochem. 2024, 125, e30568. [Google Scholar] [CrossRef]
- Zhao, L.; Xiang, S.; Tang, C.; Liu, W.; Gao, J.; Li, X.; Cao, Y. Sclerostin transduced bone marrow mesenchymal stem cells promote fracture healing in rats via the Wnt/β-catenin signal pathway. Stem Cells Dev. 2024, 33, 15–16. [Google Scholar] [CrossRef]
- Kim, M.-S.; Chung, H.-J.; Kim, K.-I. Optimal concentration of mesenchymal stem cells for fracture healing in a rat model with long bone fracture. World J. Stem Cells 2022, 14, 839–850. [Google Scholar] [CrossRef]
- Brown, M.G.; Brady, D.J.; Healy, K.M.; Henry, K.A.; Ogunsola, A.S.; Ma, X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024, 13, 1045. [Google Scholar] [CrossRef]
- Fendi, F.; Abdullah, B.; Suryani, S.; Usman, A.N.; Tahir, D. Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone 2024, 183, 117075. [Google Scholar] [CrossRef]
- Li, J.; Li, K.; Ding, Y.; Zhang, S.; Hu, T.; Wang, S.; Zheng, X. Hydroxyapatite-whitlockite composite coating as a biomimetic material for bone integration. Surf. Coat. Technol. 2024, 487, 131019. [Google Scholar] [CrossRef]
- Barbosa, F.; Garrudo, F.F.F.; Alberte, P.S.; Resina, L.; Carvalho, M.S.; Jain, A.; Marques, A.C.; Estrany, F.; Rawson, F.J.; Aléman, C.; et al. Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering. Sci. Technol. Adv. Mater. 2023, 24, 2242242. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Bhasney, S.M.; Prasannavenkadesan, V.; Sankar, M.R.; Katiyar, V. Nano-hydroxyapatite reinforced polylactic acid bioabsorbable cancellous screws for bone fracture fixations. J. Appl. Polym. Sci. 2023, 140, e54577. [Google Scholar] [CrossRef]
- Budiatin, A.S.; Khotib, J.; Samirah, S.; Ardianto, C.; Gani, M.A.; Putri, B.R.K.H.; Arofik, H.; Sadiwa, R.N.; Lestari, I.; Pratama, Y.A.; et al. Acceleration of Bone Fracture Healing through the Use of Bovine Hydroxyapatite or Calcium Lactate Oral and Implant Bovine Hydroxyapatite–Gelatin on Bone Defect Animal Model. Polymers 2022, 14, 4812. [Google Scholar] [CrossRef] [PubMed]
- Alafia, I.A.A.; Naeem, L.A.; Al-Tameemi, H.M. Study the Effect of Sodium Hyaluronate and Autologous Platelet Rich Fibrin on Symphysis Fracture Healing in Cat. Basrah J. Veter. Res. 2023, 22, 37–46. [Google Scholar] [CrossRef]
- Shan, L.; Si, Q.; Yao, P. Effects of sodium hyaluronate administration on levels of antioxidant enzymes, serum substance P and neuropeptide Y in patients undergoing locking plate fixation for tibial plateau fractures. Pak. J. Med. Sci. 2023, 39, 1040–1044. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, C.-S. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering. Gels 2023, 9, 588. [Google Scholar] [CrossRef]
- de Lacerda Dantas, P.C.; Martins-Júnior, P.A.; Coutinho, D.C.; Andrade, V.B.; Valverde, T.M.; de Souza Ávila, E.; Almeida, T.C.; Queiroz-Junior, C.M.; Sá, M.A.; Góes, A.M.; et al. Nanohybrid composed of graphene oxide functionalized with sodium hyaluronate accelerates bone healing in the tibia of rats. Mater. Sci. Eng. C 2021, 123, 111961. [Google Scholar] [CrossRef]
- Pröhl, A.; Batinic, M.; Alkildani, S.; Hahn, M.; Radenkovic, M.; Najman, S.; Jung, O.; Barbeck, M. In vivo analysis of the biocompatibility and bone healing capacity of a novel bone grafting material combined with hyaluronic acid. Int. J. Mol. Sci. 2021, 22, 4818. [Google Scholar] [CrossRef]
- Shi, P.; Xie, S.; Yang, J.; Zhang, Y.; Han, S.; Su, S.; Yao, H. Pharmacological effects and mechanisms of bee venom and its main components: Recent progress and perspective. Front. Pharmacol. 2022, 13, 1001553. [Google Scholar] [CrossRef]
- Choe, J.-Y.; Kim, S.-K. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages. Int. J. Mol. Med. 2017, 39, 539–548. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Sun, C.; Xu, N.; Liu, W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front. Immunol. 2024, 15, 1326033. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.; Sapozhnikova, A.; Lu, C.; Hu, D.; Li, X.; Miclau, T., III; Marcucio, R.S. Action of IL-1β during fracture healing. J. Orthop. Res. 2010, 28, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Li, Q.; Zhao, C. Interleukin 1β and tumor necrosis factor α promote hFOB1. 19 cell viability via activating AP1. Am. J. Transl. Res. 2016, 8, 2411. [Google Scholar] [PubMed]
- Prystaz, K.; Kaiser, K.; Kovtun, A.; Haffner-Luntzer, M.; Fischer, V.; Rapp, A.E.; Liedert, A.; Strauss, G.; Waetzig, G.H.; Rose-John, S.; et al. Distinct effects of IL-6 classic and trans-signaling in bone fracture healing. Am. J. Pathol. 2018, 188, 474–490. [Google Scholar] [CrossRef]
- Starosel’nikov, A.N.; Academy, C.S.M.; Gusev, K.A.; Mironova, O.B.; Miromanov, A.M. Modern Aspects of the Participation of Interleukin-1 Beta and Interleukin-6 in the Regeneration and Metabolic Processes of Bone Tissue (Literature Review). Nauk. Molod. Erud. Juvenium 2023, 11, 447–458. [Google Scholar] [CrossRef]
- Zhang, E.; Miramini, S.; Patel, M.; Richardson, M.; Ebeling, P.; Zhang, L. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. Comput. Methods Programs Biomed. 2022, 213, 106536. [Google Scholar] [CrossRef]
- Sananta, P.; Dradjat, R.S.; Rosandi, R.D.; Siahaan, L.D. TGF-1 biomarker level evaluation on fracture healing in a murine model with a bone defect after stromal vascular fraction application. Med. Glas. 2022, 19, 63–67. [Google Scholar] [CrossRef]
- Sun, K.; Wang, C.; Xiao, J.; Brodt, M.D.; Yuan, L.; Yang, T.; Alippe, Y.; Hu, H.; Hao, D.; Abu-Amer, Y.; et al. Fracture healing is delayed in the absence of gasdermin signaling. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, C.; Sun, X.; Ren, Z.; Tao, J. Extracellular vesicles secreted by TGF-β1-treated mesenchymal stem cells promote fracture healing by SCD1-regulated transference of LRP5. Stem Cells Int. 2023, 2023, 4980871. [Google Scholar] [CrossRef]
- Xia, C.; Ge, Q.; Fang, L.; Yu, H.; Zou, Z.; Zhang, P.; Lv, S.; Tong, P.; Xiao, L.; Chen, D.; et al. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1+ periosteal cells during fracture healing. Cell Prolif. 2020, 53, e12904. [Google Scholar] [CrossRef]
- Ding, A.; Bian, Y.-Y.; Zhang, Z.-H. SP1/TGF-β1/SMAD2 pathway is involved in angiogenesis during osteogenesis. Mol. Med. Rep. 2020, 21, 1581–1589. [Google Scholar] [CrossRef]
- Green, A.C.; Lath, D.; Hudson, K.; Walkley, B.; Down, J.M.; Owen, R.; Evans, H.R.; Paton-Hough, J.; Reilly, G.C.; Lawson, M.A.; et al. Tgfβ inhibition stimulates collagen maturation to enhance bone repair and fracture resistance in a murine myeloma model. J. Bone Miner. Res. 2019, 34, 2311–2326. [Google Scholar] [CrossRef]
First Author (Year) | Study Design | Groups | Primary Outcome | Main Results | Adverse Effects | Formulations * /Effective Dosage | Authors′ Conclusions |
---|---|---|---|---|---|---|---|
Lee et al. (2002) [12] | Observational study | Experimental: BVA + TKM treatments for 16 patients, Control: AT for 23 patients | Young’s Grade | (1) 87.5% of patients in the BVA group rated their outcomes as “Good” or higher, compared with 47.8% in the AT group. (2) The BVA group demonstrated greater improvement across all clinical symptom grades. (3) 50% of the BVA group achieved over 80 degrees of improvement in lumbar flexion, compared with 21.7% in the AT group. | No detrimental changes in serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, blood urea nitrogen, or creatinine levels were observed in either group. | 3000:1 dilution/1.0 mL injection | BVA may be more effective than AT for treating thoracolumbar compression fractures in clinical practice. |
Yang et al. (2008) [13] | Observational study | Experimental: BVA + TKM treatments for 15 patients, Control: AT for 13 patients | (1) VAS (2) ODI | (1) The study had a higher proportion of females, with an average age in the 70s. (2) Accidental falls were the most common cause of injury. (3) Both groups showed significant improvement in VAS and ODI scores from baseline to final evaluation. (4) The BVA group demonstrated significantly better VAS and ODI scores compared with the AT group after treatment. | Not reported | 3000:1 dilution/0.2 mL injection | BVA is effective for relieving symptoms associated with thoracolumbar compression fractures. |
Oh et al. (2015) [14] | Case study | Single patient (63-year-old female) | (1) AHS (2) VNRS (3) ROM of the ankle joint | After treatment, the American Orthopedic Foot and Ankle Society AHS score improved from 18 to 71, the VNRS score decreased from 8 to 3, and the ROM of the ankle joint improved. | Not reported | 20,000:1 dilution/0.2 mL injection | BVA and Danggwisu powder (medication) are effective treatments for lateral malleolus avulsion fractures. |
Ahn et al. (2019) [15] | Case study | Single patient (46-year-old) | NRS | The patient was initially undiagnosed with a rib fracture on chest radiography but was subsequently diagnosed using ultrasound. After four weeks of integrative Korean medical treatments and 18 sessions of ultrasound-guided bee venom pharmacopuncture, pain on the NRS decreased from 8 to 2. Pain relief was immediate following BVA and lasted for three hours. | Not reported | 10,000:1 dilution/0.1 mL injection | Ultrasound-guided essential BVA may act as a beneficial treatment method for rib fractures. |
Park et al. (2019) [16] | Case study | Single patient (4th toe distal phalanx fracture) | (1) NRS (2) Morphological changes on radiography | 33 sessions of combined treatments, including acupuncture, cupping, BVA, moxibustion, and herbal medicine. Improvement in the delayed union of the fracture was observed, along with a reduction in pain as measured using the NRS. | Not reported | 10,000:1 dilution/0.1 mL injection | Traditional Korean medicine treatment may be effective for delayed union of fractures; however, further clinical studies are needed to confirm these findings. |
Ahn et al. (2021) [17] | Case study | Single patient (proximal fifth metatarsal avulsion fracture) | (1) NRS (2) Morphological changes on radiography | The patient received a combination of acupuncture, BVA, moxibustion, cupping, and herbal medicine. Following treatment, improvement in the avulsion fracture was observed, along with reduced pain as measured using the NRS. | Not reported | 10,000:1 dilution/0.1 mL injection | Traditional Korean medical therapy may be an effective treatment option for avulsion fractures of the proximal fifth metatarsal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Seo, B.-K. Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview. Toxins 2024, 16, 465. https://doi.org/10.3390/toxins16110465
Kim J-H, Seo B-K. Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview. Toxins. 2024; 16(11):465. https://doi.org/10.3390/toxins16110465
Chicago/Turabian StyleKim, Jung-Hyun, and Byung-Kwan Seo. 2024. "Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview" Toxins 16, no. 11: 465. https://doi.org/10.3390/toxins16110465
APA StyleKim, J.-H., & Seo, B.-K. (2024). Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview. Toxins, 16(11), 465. https://doi.org/10.3390/toxins16110465