Current Trends in Mycotoxin Detection with Various Types of Biosensors
Abstract
:1. Introduction
2. Biosensors Based on Antibodies
3. Biosensors Based on Molecularly Imprinted Polymers (MIPs)
4. Aptamer-Based Biosensors
5. Peptides Used for Sensoric Application
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Santos Pereira, C.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajslova, J. Multi-Analyte High Performance Liquid Chromatography Coupled to High Resolution Tandem Mass Spectrometry Method for Control of Pesticide Residues, Mycotoxins, and Pyrrolizidine Alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Tirado, M.C.; Clarke, R.; Jaykus, L.A.; McQuatters-Gollop, A.; Frank, J.M. Climate Change and Food Safety: A Review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Dobolyi, C.; Sebők, F.; Varga, J.; Kocsubé, S.; Szigeti, G.; Baranyi, N.; Szécsi, Á.; Tóth, B.; Varga, M.; Kriszt, B.; et al. Occurrence of Aflatoxin Producing Aspergillus Flavus Isolates in Maize Kernel in Hungary. Acta Aliment. 2013, 42, 451–459. [Google Scholar] [CrossRef]
- Díaz Nieto, C.H.; Granero, A.M.; Garcia, D.; Nesci, A.; Barros, G.; Zon, M.A.; Fernández, H. Development of a Third-Generation Biosensor to Determine Sterigmatocystin Mycotoxin: An Early Warning System to Detect Aflatoxin B1. Talanta 2019, 194, 253–258. [Google Scholar] [CrossRef]
- Ramos, A.J.; Labernia, N.; Marín, S.; Sanchis, V.; Magan, N. Effect of Water Activity and Temperature on Growth and Ochratoxin Production by Three Strains of Aspergillus Ochraceus on a Barley Extract Medium and on Barley Grains. Int. J. Food Microbiol. 1998, 44, 133–140. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Maragos, C.M. Gold Nanoparticle-Enhanced Multiplexed Imaging Surface Plasmon Resonance (ISPR) Detection of Fusarium Mycotoxins in Wheat. Biosens. Bioelectron. 2018, 101, 245–252. [Google Scholar] [CrossRef]
- Pleadin, J.; Sokolović, M.; Perši, N.; Zadravec, M.; Jaki, V.; Vulić, A. Contamination of Maize with Deoxynivalenol and Zearalenone in Croatia. Food Control 2012, 28, 94–98. [Google Scholar] [CrossRef]
- Modrá, H.; Svobodová, Z. Incidence of Animal Poisoning Cases in the Czech Republic: Current Situation. Interdiscip. Toxicol. 2009, 2, 48–51. [Google Scholar] [CrossRef]
- Schollenberger, M.; Müller, H.-M.; Rüfle, M.; Suchy, S.; Planck, S.; Drochner, W. Survey of Fusarium Toxins in Foodstuffs of Plant Origin Marketed in Germany. Int. J. Food Microbiol. 2005, 97, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou-Bouraoui, A.; Vrabcheva, T.; Valzacchi, S.; Stroka, J.; Anklam, E. Screening Survey of Deoxynivalenol in Beer from the European Market by an Enzyme-Linked Immunosorbent Assay. Food Addit. Contam. 2004, 21, 607–617. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined Toxic Effects of Mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- D’Mello, J.P.F.; Placinta, C.M.; Macdonald, A.M.C. Fusarium Mycotoxins: A Review of Global Implications for Animal Health, Welfare and Productivity. Anim. Feed Sci. Technol. 1999, 80, 183–205. [Google Scholar] [CrossRef]
- Zhong, H.; Yu, C.; Gao, R.; Chen, J.; Yu, Y.; Geng, Y.; Wen, Y.; He, J. A Novel Sandwich Aptasensor for Detecting T-2 Toxin Based on RGO-TEPA-Au@Pt Nanorods with a Dual Signal Amplification Strategy. Biosens. Bioelectron. 2019, 144, 111635. [Google Scholar] [CrossRef]
- Gao, X.; Cao, W.; Chen, M.; Xiong, H.; Zhang, X.; Wang, S. A High Sensitivity Electrochemical Sensor Based on Fe3+-Ion Molecularly Imprinted Film for the Detection of T-2 Toxin. Electroanalysis 2014, 26, 2739–2746. [Google Scholar] [CrossRef]
- McNamee, S.E.; Bravin, F.; Rosar, G.; Elliott, C.T.; Campbell, K. Development of a Nanoarray Capable of the Rapid and Simultaneous Detection of Zearalenone, T2-Toxin and Fumonisin. Talanta 2017, 164, 368–376. [Google Scholar] [CrossRef]
- Munawar, H.; Garcia-Cruz, A.; Majewska, M.; Karim, K.; Kutner, W.; Piletsky, S.A. Electrochemical Determination of Fumonisin B1 Using a Chemosensor with a Recognition Unit Comprising Molecularly Imprinted Polymer Nanoparticles. Sens. Actuators B Chem. 2020, 321, 128552. [Google Scholar] [CrossRef]
- Mandappa, I.M.; Basavaraj, K.; Manonmani, H.K. Chapter 36—Analysis of Mycotoxins in Fruit Juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 763–777. ISBN 978-0-12-802230-6. [Google Scholar]
- Majid Cheraghali, A.; Reza Mohammadi, H.; Amirahmadi, M.; Yazdanpanah, H.; Abouhossain, G.; Zamanian, F.; Ghazi Khansari, M.; Afshar, M. Incidence of Patulin Contamination in Apple Juice Produced in Iran. Food Control 2005, 16, 165–167. [Google Scholar] [CrossRef]
- Elfadil, D.; Silveri, F.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Del Carlo, M.; Amine, A.; Compagnone, D. Liquid-Phase Exfoliated 2D Graphene Nanoflakes Electrochemical Sensor Coupled to Molecularly Imprinted Polymers for the Determination of Citrinin in Food. Talanta 2023, 253, 124010. [Google Scholar] [CrossRef]
- Cai, P.; Wang, R.; Ling, S.; Wang, S. Rapid and Sensitive Detection of Tenuazonic Acid in Agricultural By-Products Based on Gold Nano-Flower Lateral Flow. Front. Bioeng. Biotechnol. 2022, 10, 1021758. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Su, H.; Wu, K.; Dong, Z.; Li, X.; Nie, L.; Leng, Y.; Xiong, Y. Multiplexed Lateral Flow Immunoassay Based on Inner Filter Effect for Mycotoxin Detection in Maize. Sens. Actuators B Chem. 2023, 374, 132793. [Google Scholar] [CrossRef]
- Rico-Yuste, A.; Abouhany, R.; Urraca, J.L.; Descalzo, A.B.; Orellana, G.; Moreno-Bondi, M.C. Eu(III)-Templated Molecularly Imprinted Polymer Used as a Luminescent Sensor for the Determination of Tenuazonic Acid Mycotoxin in Food Samples. Sens. Actuators B Chem. 2021, 329, 129256. [Google Scholar] [CrossRef]
- Stroka, J.; Holst, C.; Anklam, E.; Reutter, M. Immunoaffinity Column Cleanup with Liquid Chromatography Using Post-Column Bromination for Determination of Aflatoxin B1 in Cattle Feed: Collaborative Study. J. AOAC Int. 2003, 86, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Palmisano, F. Determination of Ochratoxin A in Foods: State-of-the-Art and Analytical Challenges. Anal. Bioanal. Chem. 2004, 378, 96–103. [Google Scholar] [CrossRef]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical Methods for Determination of Mycotoxins: A Review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Whitaker, T.B. Detecting Mycotoxins in Agricultural Commodities. Mol. Biotechnol. 2003, 23, 61–71. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Fatér, Z.; Otta, K.H.; Tyihák, E.; Mincsovics, E. Overpressured Layer Chromatographic Determination of Aflatoxin B1, B2, G1 and G2 in Red Paprika. Microchem. J. 2007, 85, 140–144. [Google Scholar] [CrossRef]
- Peña, R.; Alcaraz, M.C.; Arce, L.; Ríos, A.; Valcárcel, M. Screening of Aflatoxins in Feed Samples Using a Flow System Coupled to Capillary Electrophoresis. J. Chromatogr. A 2002, 967, 303–314. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Tóth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Scheller, F.W.; Wollenberger, U.; Warsinke, A.; Lisdat, F. Research and Development in Biosensors. Curr. Opin. Biotechnol. 2001, 12, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Adunphatcharaphon, S.; Elliott, C.T.; Sooksimuang, T.; Charlermroj, R.; Petchkongkaew, A.; Karoonuthaisiri, N. The Evolution of Multiplex Detection of Mycotoxins Using Immunoassay Platform Technologies. J. Hazard. Mater. 2022, 432, 128706. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Badie Bostan, H.; Danesh, N.M.; Karimi, G.; Ramezani, M.; Mousavi Shaegh, S.A.; Youssefi, K.; Charbgoo, F.; Abnous, K.; Taghdisi, S.M. Ultrasensitive Detection of Ochratoxin A Using Aptasensors. Biosens. Bioelectron. 2017, 98, 168–179. [Google Scholar] [CrossRef]
- Jiang, C.; Lan, L.; Yao, Y.; Zhao, F.; Ping, J. Recent Progress in Application of Nanomaterial-Enabled Biosensors for Ochratoxin A Detection. TrAC Trends Anal. Chem. 2018, 102, 236–249. [Google Scholar] [CrossRef]
- Goud, K.Y.; Kailasa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.; Gobi, K.V.; Kim, K.-H. Progress on Nanostructured Electrochemical Sensors and Their Recognition Elements for Detection of Mycotoxins: A Review. Biosens. Bioelectron. 2018, 121, 205–222. [Google Scholar] [CrossRef]
- Patel, P.D. (Bio)Sensors for Measurement of Analytes Implicated in Food Safety: A Review. TrAC Trends Anal. Chem. 2002, 21, 96–115. [Google Scholar] [CrossRef]
- Hock, B. Antibodies for Immunosensors a Review. Anal. Chim. Acta 1997, 347, 177–186. [Google Scholar] [CrossRef]
- Singh, S.; Hasan, M.R.; Jain, A.; Pilloton, R.; Narang, J. LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview. Chemosensors 2023, 11, 255. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Y.; Yu, W.; Zhang, J.; Wang, J.; Wan, F.; Kim, Y.; Liu, Y.; Kou, X. Recent Advances in Aflatoxin B1 Detection Based on Nanotechnology and Nanomaterials-A Review. Anal. Chim. Acta 2019, 1069, 1–27. [Google Scholar] [CrossRef]
- Meulenberg, E.P. Immunochemical Methods for Ochratoxin A Detection: A Review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef] [PubMed]
- Alhamoud, Y.; Yang, D.; Fiati Kenston, S.S.; Liu, G.; Liu, L.; Zhou, H.; Ahmed, F.; Zhao, J. Advances in Biosensors for the Detection of Ochratoxin A: Bio-Receptors, Nanomaterials, and Their Applications. Biosens. Bioelectron. 2019, 141, 111418. [Google Scholar] [CrossRef] [PubMed]
- Riberi, W.I.; Zon, M.A.; Fernández, H.; Arévalo, F.J. Impedimetric Immunosensor to Determine Patulin in Apple Juices Using a Glassy Carbon Electrode Modified with Graphene Oxide. Microchem. J. 2020, 158, 105192. [Google Scholar] [CrossRef]
- Al-Jawdah, A.; Nabok, A.; Jarrah, R.; Holloway, A.; Tsargorodska, A.; Takács, E.; Székács, A. Mycotoxin Biosensor Based on Optical Planar Waveguide. Toxins 2018, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ma, Z.; Meng, H.; Xu, Y.; He, Q. Ultrasensitive and Green Electrochemical Immunosensor for Mycotoxin Ochratoxin A Based on Phage Displayed Mimotope Peptide. Talanta 2019, 194, 919–924. [Google Scholar] [CrossRef]
- Nabok, A.; Al-Jawdah, A.M.; Tsargorodska, A. Development of planar waveguide-based immunosensor for detection of low molecular weight molecules such as mycotoxins. Sens. Actuators B Chem. 2017, 247, 975–980. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, V.; Arora, K.; Singh, C.; Ali, M.A.; Puri, N.K.; Malhotra, B.D. Antibody Conjugated Metal Nanoparticle Decorated Graphene Sheets for a Mycotoxin Sensor. RSC Adv. 2016, 6, 56518–56526. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Sun, C.; Li, H.; Ouyang, Q. Synthesis of Improved Upconversion Nanoparticles as Ultrasensitive Fluorescence Probe for Mycotoxins. Anal. Chim. Acta 2016, 938, 137–145. [Google Scholar] [CrossRef]
- Majer-Baranyi, K.; Barócsi, A.; Gádoros, P.; Kocsányi, L.; Székács, A.; Adányi, N. Development of an Immunofluorescent Capillary Sensor for the Detection of Zearalenone Mycotoxin. Toxins 2022, 14, 866. [Google Scholar] [CrossRef]
- Nabok, A.; Al-Jawdah, A.M.; Abu-Ali, H.; Gémes, B.; Takács, E.; Székács, A. An Optical Planar Waveguide-Based Immunosensor for Determination of Fusarium Mycotoxin Zearalenone. Toxins 2021, 13, 89. [Google Scholar] [CrossRef]
- Székács, I.; Adányi, N.; Szendrő, I.; Székács, A. Direct and Competitive Optical Grating Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins 2021, 13, 43. [Google Scholar] [CrossRef]
- Adányi, N.; Levkovets, I.A.; Rodriguez-Gil, S.; Ronald, A.; Váradi, M.; Szendrő, I. Development of Immunosensor Based on OWLS Technique for Determining Aflatoxin B1 and Ochratoxin A. Biosens. Bioelectron. 2007, 22, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Majer-Baranyi, K.; Zalán, Z.; Mörtl, M.; Juracsek, J.; Szendrő, I.; Székács, A.; Adányi, N. Optical Waveguide Lightmode Spectroscopy Technique-Based Immunosensor Development for Aflatoxin B1 Determination in Spice Paprika Samples. Food Chem. 2016, 211, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Adányi, N.; Nagy, Á.G.; Takács, B.; Szendrő, I.; Szakacs, G.; Szűcs, R.; Tóth-Szeles, E.; Lagzi, I.; Weiser, D.; Bódai, V.; et al. Sensitivity Enhancement for Mycotoxin Determination by Optical Waveguide Lightmode Spectroscopy Using Gold Nanoparticles of Different Size and Origin. Food Chem. 2018, 267, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Majer-Baranyi, K.; Székács, A.; Szendrő, I.; Kiss, A.; Adányi, N. Optical Waveguide Lightmode Spectroscopy Technique–Based Immunosensor Development for Deoxynivalenol Determination in Wheat Samples. Eur. Food Res. Technol. 2011, 233, 1041–1047. [Google Scholar] [CrossRef]
- Lu, L.; Gunasekaran, S. Dual-Channel ITO-Microfluidic Electrochemical Immunosensor for Simultaneous Detection of Two Mycotoxins. Talanta 2019, 194, 709–716. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous Detection of Aflatoxin B1, Ochratoxin A, Zearalenone and Deoxynivalenol in Corn and Wheat Using Surface Plasmon Resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Joshi, S.; Segarra-Fas, A.; Peters, J.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W.F. Multiplex Surface Plasmon Resonance Biosensing and Its Transferability towards Imaging Nanoplasmonics for Detection of Mycotoxins in Barley. Analyst 2016, 141, 1307–1318. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Sun, J.; Ji, J.; Ye, Y.; Lu, X.; Zhang, Y.; Sun, X. Rapid, on-Site, and Sensitive Detection of Aflatoxin M1 in Milk Products by Using Time-Resolved Fluorescence Microsphere Test Strip. Food Control 2021, 121, 107616. [Google Scholar] [CrossRef]
- Tang, X.; Li, P.; Zhang, Q.; Zhang, Z.; Zhang, W.; Jiang, J. Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Anal. Chem. 2017, 89, 11520–11528. [Google Scholar] [CrossRef]
- Dorokhin, D.; Haasnoot, W.; Franssen, M.C.R.; Zuilhof, H.; Nielen, M.W.F. Imaging Surface Plasmon Resonance for Multiplex Microassay Sensing of Mycotoxins. Anal. Bioanal. Chem. 2011, 400, 3005–3011. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ma, F.; Jiang, J.; Yang, X.; Zhang, Z.; Jian, Z.; Liang, M.; Li, P.; Yu, L. Fe-N-C Single-Atom Nanozyme for Ultrasensitive, on-Site and Multiplex Detection of Mycotoxins Using Lateral Flow Immunoassay. J. Hazard. Mater. 2023, 441, 129853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, S.; Jin, Y.; Yang, C.; He, L.; Wang, J.; Chen, Y. Multiplex SERS-Based Lateral Flow Immunosensor for the Detection of Major Mycotoxins in Maize Utilizing Dual Raman Labels and Triple Test Lines. J. Hazard. Mater. 2020, 393, 122348. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, P.; Ding, X.; Zhang, Q. Graphene Oxide and Carboxylated Graphene Oxide: Viable Two-Dimensional Nanolabels for Lateral Flow Immunoassays. Talanta 2017, 165, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xu, L.; Kuang, H.; Xiao, J.; Xu, C. Fluorescent Microsphere Immunochromatographic Sensor for Ultrasensitive Monitoring Deoxynivalenol in Agricultural Products. Microchem. J. 2021, 164, 106024. [Google Scholar] [CrossRef]
- Zamora-Gálvez, A.; Morales-Narváez, E.; Mayorga-Martinez, C.C.; Merkoçi, A. Nanomaterials Connected to Antibodies and Molecularly Imprinted Polymers as Bio/Receptors for Bio/Sensor Applications. Appl. Mater. Today 2017, 9, 387–401. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent Advances and Future Prospects in Molecularly Imprinted Polymers-Based Electrochemical Biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef]
- Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly Imprinted Polymers for Food Applications: A Review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. [Google Scholar] [CrossRef]
- Ashley, J.; Shahbazi, M.-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly Imprinted Polymers for Sample Preparation and Biosensing in Food Analysis: Progress and Perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef]
- Deka, M.J.; Chowdhury, D.; Nath, B.K. Recent Development of Modified Fluorescent Carbon Quantum Dots-Based Fluorescence Sensors for Food Quality Assessment. Carbon Lett. 2022, 32, 1131–1149. [Google Scholar] [CrossRef]
- Díaz-Álvarez, M.; Martín-Esteban, A. Molecularly Imprinted Polymer-Quantum Dot Materials in Optical Sensors: An Overview of Their Synthesis and Applications. Biosensors 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Xie, X.; Liu, K.; Yang, J.; Hong, L.; Wang, S. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials 2020, 10, 930. [Google Scholar] [CrossRef] [PubMed]
- Mukunzi, D.; de Dieu Habimanab, J.; Li, Z.; Zou, X. Mycotoxins Detection: View in the Lens of Molecularly Imprinted Polymer and Nanoparticles. Crit. Rev. Food Sci. Nutr. 2022, 63, 6034–6068. [Google Scholar] [CrossRef]
- Guo, P.; Yang, W.; Hu, H.; Wang, Y.; Li, P. Rapid Detection of Aflatoxin B1 by Dummy Template Molecularly Imprinted Polymer Capped CdTe Quantum Dots. Anal. Bioanal. Chem. 2019, 411, 2607–2617. [Google Scholar] [CrossRef]
- Chmangui, A.; Driss, M.R.; Touil, S.; Bermejo-Barrera, P.; Bouabdallah, S.; Moreda-Piñeiro, A. Aflatoxins Screening in Non-Dairy Beverages by Mn-Doped ZnS Quantum Dots–Molecularly Imprinted Polymer Fluorescent Probe. Talanta 2019, 199, 65–71. [Google Scholar] [CrossRef]
- Xu, L.; Fang, G.; Pan, M.; Wang, X.; Wang, S. One-Pot Synthesis of Carbon Dots-Embedded Molecularly Imprinted Polymer for Specific Recognition of Sterigmatocystin in Grains. Biosens. Bioelectron. 2016, 77, 950–956. [Google Scholar] [CrossRef]
- Shi, J.; Li, G.; Cui, Y.; Zhang, Y.; Liu, D.; Shi, Y.; He, H. Surface-Imprinted β-Cyclodextrin-Functionalized Carbon Nitride Nanosheets for Fluorometric Determination of Sterigmatocystin. Microchim. Acta 2019, 186, 808. [Google Scholar] [CrossRef]
- Shao, M.; Yao, M.; Saeger, S.D.; Yan, L.; Song, S. Carbon Quantum Dots Encapsulated Molecularly Imprinted Fluorescence Quenching Particles for Sensitive Detection of Zearalenone in Corn Sample. Toxins 2018, 10, 438. [Google Scholar] [CrossRef]
- Fang, G.; Fan, C.; Liu, H.; Pan, M.; Zhu, H.; Wang, S. A Novel Molecularly Imprinted Polymer on CdSe/ZnS Quantum Dots for Highly Selective Optosensing of Mycotoxin Zearalenone in Cereal Samples. RSC Adv. 2013, 4, 2764–2771. [Google Scholar] [CrossRef]
- Du, Q.; Wu, P.; Hu, F.; Li, G.; Shi, J.; He, H. Novel Molecularly Imprinted Polymers on Metal–Organic Frameworks as Sensors for the Highly Selective Detection of Zearalenone in Wheat. New J. Chem. 2019, 43, 7044–7050. [Google Scholar] [CrossRef]
- Bagheri, N.; Khataee, A.; Habibi, B.; Hassanzadeh, J. Mimetic Ag Nanoparticle/Zn-Based MOF Nanocomposite (AgNPs@ZnMOF) Capped with Molecularly Imprinted Polymer for the Selective Detection of Patulin. Talanta 2018, 179, 710–718. [Google Scholar] [CrossRef]
- Yan, Z.; Fang, G. Molecularly Imprinted Polymer Based on Upconversion Nanoparticles for Highly Selective and Sensitive Determination of Ochratoxin A. J. Cent. South Univ. 2019, 26, 515–523. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Piletska, E.; Linnik, R.; Zaporozhets, O.; Brovko, O.; Piletsky, S.; El’skaya, A. Development of a Smartphone-Based Biomimetic Sensor for Aflatoxin B1 Detection Using Molecularly Imprinted Polymer Membranes. Talanta 2019, 201, 204–210. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Piletska, E.; Lynnik, R.; Zaporozhets, O.; Brovko, O.; Piletsky, S.; El’skaya, A. Fluorescent Sensor Systems Based on Nanostructured Polymeric Membranes for Selective Recognition of Aflatoxin B1. Talanta 2017, 175, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ton, X.-A.; Acha, V.; Bonomi, P.; Tse Sum Bui, B.; Haupt, K. A Disposable Evanescent Wave Fiber Optic Sensor Coated with a Molecularly Imprinted Polymer as a Selective Fluorescence Probe. Biosens. Bioelectron. 2015, 64, 359–366. [Google Scholar] [CrossRef]
- Quílez-Alburquerque, J.; Descalzo, A.B.; Moreno-Bondi, M.C.; Orellana, G. Luminescent Molecularly Imprinted Polymer Nanocomposites for Emission Intensity and Lifetime Rapid Sensing of Tenuazonic Acid Mycotoxin. Polymer 2021, 230, 124041. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Armutcu, C.; Denizli, A. Molecularly Imprinted Polymer Film Based Plasmonic Sensors for Detection of Ochratoxin A in Dried Figure. Polym. Bull. 2022, 79, 4049–4067. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR Nanosensor Based on Molecularly Imprinted Polymer Film with Gold Nanoparticles for Sensitive Detection of Aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of Gold Nanoparticles Decorated Molecularly Imprinted–Based Plasmonic Sensor for the Detection of Aflatoxin M1 in Milk Samples. Chemosensors 2021, 9, 363. [Google Scholar] [CrossRef]
- Choi, S.-W.; Chang, H.-J.; Lee, N.; Chun, H.S. A Surface Plasmon Resonance Sensor for the Detection of Deoxynivalenol Using a Molecularly Imprinted Polymer. Sensors 2011, 11, 8654–8664. [Google Scholar] [CrossRef]
- Atar, N.; Eren, T.; Yola, M.L. A Molecular Imprinted SPR Biosensor for Sensitive Determination of Citrinin in Red Yeast Rice. Food Chem. 2015, 184, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yan, H.; Li, G.; Xu, X.; Zhu, L.; Chen, X.; Wang, J. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. Food Anal. Methods 2019, 12, 1648–1657. [Google Scholar] [CrossRef]
- Fang, G.; Wang, H.; Yang, Y.; Liu, G.; Wang, S. Development and Application of a Quartz Crystal Microbalance Sensor Based on Molecularly Imprinted Sol-Gel Polymer for Rapid Detection of Patulin in Foods. Sens. Actuators B Chem. 2016, 237, 239–246. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Wu, X.; Pan, M.; Hu, N.; Wang, J.; Wang, S. Quartz Crystal Microbalance Sensor Based on Covalent Organic Framework Composite and Molecularly Imprinted Polymer of Poly(o-Aminothiophenol) with Gold Nanoparticles for the Determination of Aflatoxin B1. Sens. Actuators B Chem. 2019, 291, 293–297. [Google Scholar] [CrossRef]
- Fang, G.; Liu, G.; Yang, Y.; Wang, S. Quartz Crystal Microbalance Sensor Based on Molecularly Imprinted Polymer Membrane and Three-Dimensional Au Nanoparticles@mesoporous Carbon CMK-3 Functional Composite for Ultrasensitive and Specific Determination of Citrinin. Sens. Actuators B Chem. 2016, 230, 272–280. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Rezayi, M.; Beheshti, H.R.; Boroushaki, M.T. Ultra-Sensitive Molecularly Imprinted Electrochemical Sensor for Patulin Detection Based on a Novel Assembling Strategy Using Au@Cu-MOF/N-GQDs. Sens. Actuators B Chem. 2020, 318, 128219. [Google Scholar] [CrossRef]
- Selvam, S.P.; Kadam, A.N.; Maiyelvaganan, K.R.; Prakash, M.; Cho, S. Novel SeS2-Loaded Co MOF with Au@PANI Comprised Electroanalytical Molecularly Imprinted Polymer-Based Disposable Sensor for Patulin Mycotoxin. Biosens. Bioelectron. 2021, 187, 113302. [Google Scholar] [CrossRef]
- Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A Novel Molecularly Imprinted Electrochemical Sensor Modified with Carbon Dots, Chitosan, Gold Nanoparticles for the Determination of Patulin. Biosens. Bioelectron. 2017, 98, 299–304. [Google Scholar] [CrossRef]
- Huang, Q.; Zhao, Z.; Nie, D.; Jiang, K.; Guo, W.; Fan, K.; Zhang, Z.; Meng, J.; Wu, Y.; Han, Z. Molecularly Imprinted Poly(Thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Anal. Chem. 2019, 91, 4116–4123. [Google Scholar] [CrossRef]
- Singh, A.K.; Lakshmi, G.B.V.S.; Fernandes, M.; Sarkar, T.; Gulati, P.; Singh, R.P.; Solanki, P.R. A Simple Detection Platform Based on Molecularly Imprinted Polymer for AFB1 and FuB1 Mycotoxins. Microchem. J. 2021, 171, 106730. [Google Scholar] [CrossRef]
- Radi, A.-E.; Eissa, A.; Wahdan, T. Molecularly Imprinted Impedimetric Sensor for Determination of Mycotoxin Zearalenone. Electroanalysis 2020, 32, 1788–1794. [Google Scholar] [CrossRef]
- Atar, N.; Yola, M.L.; Eren, T. Sensitive Determination of Citrinin Based on Molecular Imprinted Electrochemical Sensor. Appl. Surf. Sci. 2016, 362, 315–322. [Google Scholar] [CrossRef]
- Akyıldırım, O.; Kardaş, F.; Beytur, M.; Yüksek, H.; Atar, N.; Yola, M.L. Palladium Nanoparticles Functionalized Graphene Quantum Dots with Molecularly Imprinted Polymer for Electrochemical Analysis of Citrinin. J. Mol. Liq. 2017, 243, 677–681. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical Applications of Aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.-L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef]
- Ruscito, A.; Smith, M.; Goudreau, D.N.; DeRosa, M.C. Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection. J. AOAC Int. 2016, 99, 865–877. [Google Scholar] [CrossRef]
- Al-Rubaye, A.G.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takács, E.; Székács, A. Detection of ochratoxin A in aptamer assay using total internal reflection ellipsometry. Sens. Actuators B Chem. 2018, 263, 248–251. [Google Scholar] [CrossRef]
- Liu, L.; Tanveer, Z.I.; Jiang, K.; Huang, Q.; Zhang, J.; Wu, Y.; Han, Z. Label-Free Fluorescent Aptasensor for Ochratoxin—A Detection Based on CdTe Quantum Dots and (N-Methyl-4-Pyridyl) Porphyrin. Toxins 2019, 11, 447. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Q.; Tanveer, Z.I.; Jiang, K.; Zhang, J.; Pan, H.; Luan, L.; Liu, X.; Han, Z.; Wu, Y. “Turn off-on” Fluorescent Sensor Based on Quantum Dots and Self-Assembled Porphyrin for Rapid Detection of Ochratoxin A. Sens. Actuators B Chem. 2020, 302, 127212. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, J.; Cui, C.; Wang, Y.; Yang, H.; Yuan, M.; Yu, H. A Label-Free Aptasensor for Turn-on Fluorescent Detection of Ochratoxin a Based on SYBR Gold and Single Walled Carbon Nanohorns. Food Control 2021, 123, 107741. [Google Scholar] [CrossRef]
- Hitabatuma, A.; Pang, Y.; Yu, L.; Shen, X. A Competitive Fluorescence Assay Based on Free-Complementary DNA for Ochratoxin A Detection. Food Chem. 2021, 342, 128303. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Y.; Chen, Y.; Weng, B.; Xu, L.; Li, C. A Highly Sensitive Aptasensor for OTA Detection Based on Hybridization Chain Reaction and Fluorescent Perylene Probe. Biosens. Bioelectron. 2016, 81, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, E.; Jin, Z.; Irudayaraj, J. An Ultrasensitive Aptasensor Based on Fluorescent Resonant Energy Transfer and Exonuclease-Assisted Target Recycling for Patulin Detection. Food Chem. 2018, 249, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.-J.; Mun, H.; Kim, S.-J.; Shim, W.-B.; Kim, M.-G. Detection of Ochratoxin A (OTA) in Coffee Using Chemiluminescence Resonance Energy Transfer (CRET) Aptasensor. Food Chem. 2016, 194, 1102–1107. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Wei, Z.; Zhou, J.; Ren, S.; He, J.; Luan, Y.; Lou, X. Shortened and Multivalent Aptamers for Ultrasensitive and Rapid Detection of Alternariol in Wheat Using Optical Waveguide Sensors. Biosens. Bioelectron. 2022, 196, 113702. [Google Scholar] [CrossRef]
- Sun, L.; Wu, L.; Zhao, Q. Aptamer Based Surface Plasmon Resonance Sensor for Aflatoxin B1. Microchim. Acta 2017, 184, 2605–2610. [Google Scholar] [CrossRef]
- Bianco, M.; Sonato, A.; De Girolamo, A.; Pascale, M.; Romanato, F.; Rinaldi, R.; Arima, V. An Aptamer-Based SPR-Polarization Platform for High Sensitive OTA Detection. Sens. Actuators B Chem. 2017, 241, 314–320. [Google Scholar] [CrossRef]
- Al-Rubaye, A.G.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takács, E.; Székács, A. Label-Free Optical Detection of Mycotoxins Using Specific Aptamers Immobilized on Gold Nanostructures. Toxins 2018, 10, 291. [Google Scholar] [CrossRef]
- Al-Jawdah, A.M.; Nabok, A.; Abu-Ali, H.; Catanante, G.; Marty, J.-L.; Székács, A. Highly sensitive label-free in vitro detection of aflatoxin B1 in an aptamer assay using optical planar waveguide operating as a polarization interferometer. Anal Bioanal Chem 2019, 411, 7717–7724. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, K.; Shi, P.; Ding, X.; Zhang, S. Rapid and label-free detection of aflatoxin B1 using a rationally truncated aptamer and via circular dichroism measurement. Chem. Commun. 2022, 58, 4779–4782. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, D.-W.; Pu, H.; Huang, L. Bridging Fe3O4@Au Nanoflowers and Au@Ag Nanospheres with Aptamer for Ultrasensitive SERS Detection of Aflatoxin B1. Food Chem. 2020, 324, 126832. [Google Scholar] [CrossRef]
- Chen, R.; Sun, Y.; Huo, B.; Mao, Z.; Wang, X.; Li, S.; Lu, R.; Li, S.; Liang, J.; Gao, Z. Development of Fe3O4@Au Nanoparticles Coupled to Au@Ag Core-Shell Nanoparticles for the Sensitive Detection of Zearalenone. Anal. Chim. Acta 2021, 1180, 338888. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, S.; Sun, Y.; Huo, B.; Xia, Y.; Qin, Y.; Li, S.; Shi, B.; He, D.; Liang, J.; et al. Surface-Enhanced Raman Spectroscopy Aptasensor for Simultaneous Determination of Ochratoxin A and Zearalenone Using Au@Ag Core-Shell Nanoparticles and Gold Nanorods. Microchim. Acta 2021, 188, 281. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, J.; Li, H.; Chang, Y.; Dai, S.; Xu, R.; Dou, M.; Li, Q.; Lv, G.; Zheng, T. Highly Sensitive SERS Detection for Aflatoxin B1 and Ochratoxin A Based on Aptamer-Functionalized Photonic Crystal Microsphere Array. Sens. Actuators B Chem. 2022, 364, 131778. [Google Scholar] [CrossRef]
- Gillibert, R.; Triba, M.N.; de la Chapelle, M.L. Surface Enhanced Raman Scattering Sensor for Highly Sensitive and Selective Detection of Ochratoxin A. Analyst 2017, 143, 339–345. [Google Scholar] [CrossRef]
- He, D.; Wu, Z.; Cui, B.; Xu, E. Aptamer and Gold Nanorod–Based Fumonisin B1 Assay Using Both Fluorometry and SERS. Microchim. Acta 2020, 187, 215. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, B.; Ye, Y.; Qi, X.; Zhang, Y.; Xia, X.; Wang, X.; Zhou, N. A Fluorescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensor for Rapid and Sensitive Detection of Ochratoxin A. Biosens. Bioelectron. 2022, 207, 114164. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Stepanova, V.; Kutyreva, M.; Gataulina, A.; Ulakhovich, N.; Evtugyn, V.; Hianik, T. Impedimetric Aptasensor for Ochratoxin A Determination Based on Au Nanoparticles Stabilized with Hyper-Branched Polymer. Sensors 2013, 13, 16129–16145. [Google Scholar] [CrossRef]
- Han, Z.; Tang, Z.; Jiang, K.; Huang, Q.; Meng, J.; Nie, D.; Zhao, Z. Dual-Target Electrochemical Aptasensor Based on Co-Reduced Molybdenum Disulfide and Au NPs (RMoS2-Au) for Multiplex Detection of Mycotoxins. Biosens. Bioelectron. 2020, 150, 111894. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, K.; Yu, J.; Shi, P. Complementary DNA Significantly Enhancing Signal Response and Sensitivity of a Molecular Beacon Probe to Aflatoxin B1. Biosensors 2023, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ren, C.; Wang, C.; An, K.; Cui, H.; Hao, N.; Wang, K. Gold Nanoparticles Mediated Designing of Versatile Aptasensor for Colorimetric/Electrochemical Dual-Channel Detection of Aflatoxin B1. Biosens. Bioelectron. 2020, 166, 112443. [Google Scholar] [CrossRef] [PubMed]
- Mousivand, M.; Javan-Nikkhah, M.; Anfossi, L.; Di Nardo, F.; Salina, M.; Bagherzadeh, K. High Performance Aptasensing Platform Development through in Silico Aptamer Engineering for Aflatoxin B1 Monitoring. Food Control 2023, 145, 109418. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, M.; Lai, W.; Song, X.; Li, J.; Liu, D.; Wei, Z.; Hong, C. Construction of Electrochemical and Electrochemiluminescent Dual-Mode Aptamer Sensors Based on Ferrocene Dual-Functional Signal Probes for the Sensitive Detection of Alternariol. Anal. Chim. Acta 2023, 1272, 341476. [Google Scholar] [CrossRef]
- Ebanks, F.; Nasrallah, H.; Garant, T.M.; McConnell, E.M.; DeRosa, M.C. Colorimetric Detection of Aflatoxins B1 and M1 Using Aptamers and Gold and Silver Nanoparticles. Adv. Agrochem 2023, 2, 221–230. [Google Scholar] [CrossRef]
- Bazin, I.; Andreotti, N.; Hassine, A.I.H.; De Waard, M.; Sabatier, J.M.; Gonzalez, C. Peptide Binding to Ochratoxin A Mycotoxin: A New Approach in Conception of Biosensors. Biosens. Bioelectron. 2013, 40, 240–246. [Google Scholar] [CrossRef]
- Soleri, R.; Demey, H.; Tria, S.A.; Guiseppi-Elie, A.; IBN Had Hassine, A.; Gonzalez, C.; Bazin, I. Peptide Conjugated Chitosan Foam as a Novel Approach for Capture-Purification and Rapid Detection of Hapten–Example of Ochratoxin A. Biosens. Bioelectron. 2015, 67, 634–641. [Google Scholar] [CrossRef]
- Giraudi, G.; Anfossi, L.; Baggiani, C.; Giovannoli, C.; Tozzi, C. Solid-Phase Extraction of Ochratoxin A from Wine Based on a Binding Hexapeptide Prepared by Combinatorial Synthesis. J. Chromatogr. A 2007, 1175, 174–180. [Google Scholar] [CrossRef]
- He, Z.; He, Q.; Xu, Y.; Li, Y.; Liu, X.; Chen, B.; Lei, D.; Sun, C. Ochratoxin A Mimotope from Second-Generation Peptide Library and Its Application in Immunoassay. Anal. Chem. 2013, 85, 10304–10311. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Pirpour Tazehkand, A.; Homayouni-Rad, A.; de la Guardia, M. Nanomaterials and New Biorecognition Molecules Based Surface Plasmon Resonance Biosensors for Mycotoxin Detection. Biosens. Bioelectron. 2019, 143, 111603. [Google Scholar] [CrossRef]
Feature | Antibodies | |
---|---|---|
Monoclonal | Polyclonal | |
Specificity | monospecific | polyspecific |
Product standardisation | easy | varies from batch to batch |
Cross-reactivity | low | high |
Production | expensive | less expensive |
Concentration of non-specific IgG | low | high |
Mycotoxin | Analytical Method | Linear Range | Limit of Detection | Samples | Reference |
---|---|---|---|---|---|
PAT | EIS, GCE/GO-anti-PAT | 0.01–10 ng/mL (0.065–64.9 nM) | 9.8 pg/mL (64 pM) | apple juice | [44] |
OTA | polarisation interferometer | 10 pg/mL (25 pM) | [45] | ||
OTA | SWV/BSA/anti-OTA mAb/Mal- polyethylene glycol-NH2/MPA/AuNps/GCE | 7.17–548.8 fg/mL (0.018–1.36 pM) | 2.04 fg/mL (0.005 pM) | spiked beer, corn | [46] |
AFB1 | polarisation interferometer | 10 pg/mL (32 pM) | [47] | ||
AFB1 | EC, rGO-Ni NPs/anti-AFB1/ITO | 1–8 ng/mL (3.20–25.6 nM) | 0.16 ng/mL (0.51 nM) | [48] | |
AFB1 DON | fluorescent probes, UCNPs (NaYF4:Yb/Ho/Gd/antibody-target complex | 1–100 pg/mL (3.2–320 pM); 1–100 pg/mL (3.4–340 pM) | 1 ng/mL (3.2 pM); 1 pg/mL (3.4 pM) | adulterated peanut oil | [49] |
ZON | competitive capillary- immunofl/glass capillary/ZON-BSA | 0.01–10 ng/mL (0.031–31.4 nM) | 3 fg/mL (9.4 fM) | [50] | |
ZON | polarisation interferometer/polyelectrolyte/protein A | 10 pg/mL (31 pM) | [51] | ||
ZON | OWLS/ZON-conj./pAb | 0.01–1 pg/mL (0.031–3.14 pM) | 2 fg/mL (6.3 fM) | maize | [52] |
AFB1 OTA | OWLS/Ag-conj./mAb | 0.001–1 ng/mL (0.0032–3.20 nM); 0.5–10 ng/mL (1.24–24.8 nM) | 0.5 pg/mL (1.6 pM); 0.1 ng/mL (6.3 pM) | wheat, barley | [53] |
AFB1 | OWLS/AFB1-conj./mAb | 0.1–100 ng/mL (0.32–320 nM) | spice paprika | [54] | |
AFB1 | OWLS/AuNPs/AFB1-conj./mAb | 0.001–10 ng/mL (0.0032–32 nM) | spice paprika | [55] | |
DON | 0.005–50 ng/mL (0.0169–168.7 nM) | 1 pg/mL (3.38 pM) | wheat flour | [56] | |
FB1 DON | EC, ITO/AuNPs/anti-FB1; anti-DON | 0.3–140 ng/mL (0.42–194 nM); 0.2–60 ng/mL (0.6875–202.5 nM) | 97 pg/mL (0.134 nM); 35 pg/mL (0.118 nM) | corn | [57] |
AFB1 OTA ZON DON | SPR/SAM/Ag-conj. | 0.59 ng/mL (0.189 nM); 1.27 ng/mL (3.145 nM); 7.07 ng/mL (22.21 nM); 3.26 ng/mL (11.0 nM) | corn, wheat | [58] | |
DON ZON T-2 OTA FB1 AFB1 | iSPR 6-plex Ag-OVA conj./mAbs | 26–3200 µg/kg (0.088–10.8 μM); 16–160 µg/kg (0.050–0.503 μM); 0.6–290 µg/kg (1.3–622 nM); 13–320 µg/kg (0.032–0.792 μM); 10–1200 µg/kg (0.14–1.66 μM); 3–260 µg/kg (10–833 nM) | 26 μg/kg (88 nM); 6 μg/kg (18 nM); 0.6 μg/kg (1.3 nM); 3 μg/kg (7.4 nM); 2 μg/kg (2.8 nM); 0.6 μg/kg (2 nM) | barley | [59] |
DON ZON T-2 | iSPR/Ag; AuNPs- secondary Ab- conj. | 48–2827 ng/g (0.16–9.54 μM); 54–790 ng/g (0.17–2.48 μM); 42–1836 ng/g (0.09–3.94 μM) | 15 µg/kg (50 nM); 24 µg/kg (80 nM); 12 µg/kg (30 nM); | wheat | [8] |
AFM1 | UV/TRFM–ICTS (Eu(III)-TRFM/mAb) | 0.05–2.0 ng/mL (0.15–6.09 nM) | 19 pg/mL (57 pM) | milk and its products | [60] |
AFB1 ZON | TRFICA/Eu/Tb(III)/AIdNb)/mAb | 0.13–4.54 ng/mL (0.42–14.54 nM); 0.20–2.77 ng/mL (0.63–8.70 nM) | 50 pg/mL (160 pM); 70 ng/mL (220 pM) | corn and its products | [61] |
DON, ZON | iSPR/mycotoxin–protein | 21 ng/mL (70.9 nM); 17 ng/mL (57.4 nM); 16 ng/mL (50.3 nM); 10 ng/mL (31.4 nM) | corn, wheat | [62] | |
FB1 AFB1 | LFIA/mAb/Fe-N-C SAzyme | 0.02–150 ng/mL (0.028–207.80 nM); 0.005–200 ng/mL (0.016–640.5 nM) | 13.9 pg/mL (19.3 pM); 2.8 pg/mL (9 pM) | [63] | |
AFB1 ZON FB1 DON OTA T-2 | multiplex SERS-based LFIA in./Raman reporter molecules/Au@Ag/mAbNPs/Ag-conj. | 2–500 pg/mL (0.006–1.60 nM); 0.02–5 ng/mL (0.063–15.705 nM); 0.5–35 ng/mL (0.69–48.49 nM); 0.2–10 ng/mL (0.69–48.49 nM); 0.05–5 ng/mL (0.124–12.382 nM); 0.05–5 ng/mL (0.107–10.72 nM) | 0.96 pg/mL (3.1 pM); 6.2 pg/mL (19 pM); 0.26 ng/mL (360 pM); 0.11 ng/mL (371 pM); 157 pg/mL (389 pM); 8.6 pg/mL (18.4 pM) | maize | [64] |
AFB1 | visual LFIA/Ab-GO | 0.3–1 ng/mL (0.96–3.20 nM) | 0.3 ng/mL (0.96 nM) | peanut oil, maize, rice | [65] |
DON | rapid LFIA/anti-DON mAbs/FMs | 2.5–25 ng/mL (8.44–84.4 nM) | 2.5 ng/mL (8.44 nM) | agricultural products | [66] |
TeA | visual LFIA/AuNP or AuNF/anti-TeA McAb | 12.5–100 ng/mL (63.4–507 nM); 0.78–50 ng/mL (3.96–253.5 nM) | 12.5 ng/mL (63.4 nM); 0.78 ng/mL (3.95 nM) | apple juice, tomato ketchup | [22] |
Mycotoxin | Analytical Method | Linear Range | Limit of Detection | Samples | Reference |
---|---|---|---|---|---|
AFB1 | FL/CdTe QDs/MIPs | 80–400 ng/g (0.26–1.28 μM) | [76] | ||
AF | FL/Mn-ZnS QDs/MIP | 16 ng/mL (50 nM) | almond-, soy-, rice-based beverages | [77] | |
STC | FL/luminescent CD-MIP | 0.05–2 µg/mL (0.15–6.17 μM) | 0.19 µg/mL (0.59 nM) | millet, maize, rice | [78] |
STC | FL/carbon nanosheets MIP | 0.049–1.0 µg/mL (0.15 to 3.1 μM) | 24 ng/mL (74 nM) | [79] | |
ZON | FL/CQDs-MIP | 0.02–1.0 µg/mL (0.06–3.14 μM) | 0.02 µg/mL (0.06 μM) | maize | [80] |
ZON | FL/MIOM/CdSe/ZnS QDs | 0.96–993 ng/mL (0.003–3.12 μM) | 0.64 ng/mL (2 nM) | corn, rice, wheat flour | [81] |
ZON | FL/MOF/MIP | 0.05–1.0 µg/mL (0.16–3.14 μM) | 18 ng/mL (56.5 nM) | wheat | [82] |
PAT | FL/AgNPs/Zn-MOF | 0.015–1.54 μg/mL (0.1–10 μM) | 9.24 ng/mL (60 nM) | surface water, apple juice | [83] |
OTA | FL/silica-UCNPs/MIP | 0.05–1 µg/mL (0.12–2.48 μM) | 31 ng/mL (76.8 nM) | corn, rice, feed | [84] |
AFB1 | FL/MIP | 14–500 ng/mL (0.045–1.60 μM) | 14 ng/mL (45 nM) | waste water | [85] |
AFB1 | smartphone-based FL MIP | 20–100 ng/mL (0.06–0.32 μM) | 20 ng/mL (64 nM) | maize | [86] |
CIT | Disp. FL/fiber optic/MIP | 0.5–2.5 μg/mL (2.0–10.0 μM) | [87] | ||
TeA | luminescent sensor/Eu(III)/MIP | 1.7–20 μg/mL (8.6–101.4 μM) | 0.5 μg/mL (2.5 μM) | rice | [24] |
TeA | luminescent/SiO2@Ru-MIP | 0.10–78.9 μg/mL (0.51–400 μM) | 63.8 ng/mL (323 nM) | [88] | |
OTA | SPR/MIP | 0.1–20 ng/mL (0.25–49.5 nM) | 0.028 ng/mL (70 pM) | dried fig | [89] |
AFB1 | SPR/MIP/AuNPs | 0.0001–10 ng/mL (0.0003–32 nM) | 1.04 pg/mL (3.3 pM) | corn, peanut | [90] |
AFM1 | SPR/MIP/AuNPs | 0.0003–20 ng/mL (0.0009–60.92 nM) | 0.4 pg/mL (1.2 pM) | milk | [91] |
DON | SPR/MIP | 0.1–100 ng/mL (0.34–337 nM) | 1 ng/mL (>3.37 nM) | [92] | |
CIT | SPR/MIP | 0.005–1.0 ng/mL (0.02–4.0 nM) | 1.7 pg/mL (6.8 pM) | red yeast rice | [93] |
PAT | SERS/AuNPs/MIP | 0.00108–7.7 ng/mL (0.007–50 nM) | 0.83 pg/mL (5.37 pM) | fruit product | [94] |
PAT | QCM/MIP | 7.5–60 ng/mL (48.7–389.3 nM) | 3.1 ng/mL (20.1 nM) | apple and pear juice, haw flakes | [95] |
AFB1 | QCM/AuNPs/MIP | 0.05–75 ng/mL (0.16–240.17 nM) | 2.8 pg/mL (9 pM) | peanut, pistachio, rice, wheat | [96] |
CIT | QCM/AuNPs/MIP | 1.5–50.1 ng/mL (6.0–200 nM) | 0.45 ng/mL (1.8 nM) | cereal | [97] |
PAT | DPV/GCE/QDs/AuNPs@Cu-MOF/MIP | 0.001–70.0 ng/mL (0.0064–454.2 nM) | 0.7 pg/mL (4.5 pM) | apple juices | [98] |
PAT | DPV/Au@PANI/SeS2@Co MOF/SPE | 0.000154–15.4 ng/mL (0.001–100 nM) | 0.102 pg/mL (0.66 pM) | apple juice | [99] |
PAT | DPV/MIP-Au/CS-CDs/GCE | 0.000154–0.15 ng/mL (0.001–1 nM) | 0.117 pg/mL (0.757 pM) | fruit juices | [100] |
PAT | EC/poly(thionine/graphene/PtNPs/MIP | 0.002–2 ng/mL (0.013–12.98 nM) | 1 pg/mL (6.5 pM) | apple and grape juice | [101] |
AFB1 FB1 | DPV/ITO/PANI-MIP | 0.001–500 ng/mL (0.003–1601 nM); 0.001–500 ng/mL (0.0014–692.7 nM) | 0.31 pg/mL (1 pM); 0.32 pg/mL (4.4 pM) | corn | [102] |
FB1 | DPV/PtE/PP-Zn-porphyrin MIP | 0.72–7220 fg/mL (0.001–10 pM) | 0.02 fg/mL (0.03 fM) | maize | [18] |
ZON | Impedimetric sensor/SCAuE/PPD-MIP | 2.5–200 ng/mL (7.9–628 nM) | 0.20 ng/mL (0.628 nM) | corn flakes | [103] |
T-2 | DPV/Fe3+-MIP-GCE | 0.51–0.99 ng/mL (0.0011–2.12 μM) | 0.15 ng/mL (0.33 nM) | cereals, human serum | [16] |
CIT | PVP/SPE/GF/MIP | 25–12,500 ng/mL (0.1–5.0 μM) | 5 ng/mL (19 nM) | red rice, cranberry, turmeric, corn, wheat germ, rice starch | [21] |
CIT | voltammetric/GCE/PtNP/rGO | 0.25–25 fg/mL (1–100 pM) | 0.05 fg/mL (0.2 pM) | rye | [104] |
CIT | DPV/MIP/PdNPs/BZ/GQDs/GCE | 250–1250 fg/mL (1–5 nM) | 50 fg/mL (0.2 nM) | chicken egg | [105] |
Mycotoxin | Analytical Method | Linear Range | Limit of Detection | Samples | Reference |
---|---|---|---|---|---|
OTA | total internal reflection ellipsometry | 10 pg/mL (25 pM) | [109] | ||
OTA | label-free FL/CdTe QDs/Apt/(N-methyl-4-pyridy) porphyrin (TMPyP) | 0.2–20 ng/mL (0.49–49.5 nM) | 0.16 ng/mL (0.40 nM) | Astragalus membranaceus | [110] |
OTA | FL/ZnCdSe QDs/self-assembled Zn porphyrin | 0.5–80 ng/mL (1.24–198 nM) | 0.33 ng/mL (0.82 nM) | coffee, milk | [111] |
OTA | label-free FL/SWCNHs | 5–500 ng/mL (12.4–1240 nM) | 2.3 ng/mL (5.70 nM) | red wine | [112] |
OTA | FL/MB-fluorophore/free-cDNA | 10 pg/mL–1 µg/mL (0.02–2480 nM) | 0.247 pg/mL (0.61 pM) | wheat | [113] |
OTA | FL/dendritic/DNA/ AMNPs/OTA-Apt | 0.4–8.1 pg/mL (1–20 pM) | 0.04 pg/mL 0.10 pM | corn | [114] |
PAT | FRET/rare-earth-doped UCNPs/Apt | 0.01–100 ng/mL (0.06–648.90 nM) | 3 pg/mL (20 pM) | apple juice | [115] |
OTA | CRET/Apt | 0.1–100 ng/mL (0.25–248 nM) | 0.22 ng/mL (0.55 nM) | coffee | [116] |
AOH | FL/optical-fibre waveguide/Apt | 2.6 fg/mL–25.8 ng/mL (10 fM–100 nM) | 10.85 fg/mL (42 fM) | wheat | [117] |
AFB1 | SPR/Apt | 0.13–62.46 ng/mL (0.4–200 nM) | 0.13 ng/mL (0.4 nM) | red wine, beer | [118] |
OTA | SPR/Apt | 0.2–40 ng/mL (0.50–99.1 nM) | 5 pg/mL (12.4 pM) | [119] | |
AFB1 | polarisation interferometer/Au nanostructure-or SiO2–Si3N4–SiO2 waffle-based | 1-10 pg/mL (2.5–25 pM) | [120,121] | ||
AFB1 | label-free circular dichroism/Apt | 187 pg/mL (0.6 nM) | [122] | ||
AFB1 | SERS/Fe3O4@Au NFs-cDNA/Au-4MBA@Ag NSs-Apt | 0.0001–100 ng/mL (0.0003–320 nM) | 0.4 pg/mL (1.3 pM) | peanut oil | [123] |
ZON OTA | SERS/Au NRs-cDNA/Au@4-MBA@Ag CS-OTA-Apt or Au@DTNB@Ag CS-ZEN-Apt | 0.05–500 ng/mL (0.16–1570 nM); 0.01–100 ng/mL (0.025–248 nM) | 0.054 ng/mL (0.17 nM); 0.018 ng/mL (0.045 nM) | wheat, corn | [124] |
ZON | SERS/Au@DTNB@Ag CS-Apt/Fe3O4@Au MNPs-cDNA | 0.005–500 ng/mL (0.016–1570.50 nM) | 0.001 ng/mL (0.003 nM) | beer, wine | [125] |
AFB1 OTA | SERS/SPCM/AuNPs- Apts/AuNPs-anti-Apt-dyes | 0.01–100 ng/mL (0.03–320.23 nM); 0.001–10 ng/mL (0.0025–24.76 nM) | 0.36 pg/mL (0.001 nM); 0.034 pg/mL (0.084 pM) | lily, jobstears seed, lotus seed | [126] |
OTA | SERS/rough gold film/Apt | 0.40 pg/mL–0.40 µg/mL (1 pM–1 μM) | [127] | ||
FB1 | SERS and FL/cDNA-AuNR/Apt-Cy5.5 | 10–500 pg/mL (0.014–0.69 nM); 10–250 pg/mL (0.014–0.35 nM) | 3 pg/mL (0.0042 nM); 5 pg/mL (0.0069 nM) | wheat | [128] |
OTA | SERS and FL/Au nanostars-cDNA-Apt | 10–500 pg/mL (0.025–1.24 nM); 10–250 pg/mL (0.025–0.62 nM) | 1.03 pg/mL (0.0026 nM); 0.17 pg/mL (0.4 pM) | coffee, wine | [129] |
OTA | impedimetric/Au electrode/electropolymerised Neutral Red-AuNPs-Apt/Botlorn H30® | 0.04–40.38 ng/mL (0.1–100 nM) | 0.01 ng/mL (0.02 nM) | beer | [130] |
ZON FB1 | DPV/GCE/rMoS2-Au/APs/BSA/L-CPs | 0.001–10 ng/mL (0.031–31.41 nM); 0.001–100 ng/mL (0.031–314.10 nM) | 0.5 pg/mL (1.6 pM) | corn | [131] |
AFB1 | FL/cDNA/MB/Apt | 0.31 ng/mL–0.94 μg/mL (1 nM–3 μM) | 0.31 ng/mL (1 nM) | beer | [132] |
AFB1 | colourimetric and EC/Apt-Fe3O4@Au magnetic beads/Apt/cDNA-AuNPs | 5–200 ng/mL (15.23–609.24 nM); 0.05–100 ng/mL (0.15–304.62 nM) | 35 pg/mL (0.11 nM); 0.43 pg/mL (0.0013 nM) | corn | [133] |
AFB1 | LF A/Apt-AuNP strip | 0.1–50 ng/mL (0.30–152.3 nM) | 0.1 ng/mL (0.30 nM) | corn | [134] |
AOH | ECL or EC/GCE by Ru-MOF/Cu@Au NPs/ferrocenecarboxylic acid-DNA2 | 0.1 pg/mL–100 ng/mL (0.4 pM–387.25 nM) | 0.014 pg/mL (0.054 pM); 0.083 pg/mL (0.32 pM) | apples, oranges, pears | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majer-Baranyi, K.; Adányi, N.; Székács, A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins 2023, 15, 645. https://doi.org/10.3390/toxins15110645
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins. 2023; 15(11):645. https://doi.org/10.3390/toxins15110645
Chicago/Turabian StyleMajer-Baranyi, Krisztina, Nóra Adányi, and András Székács. 2023. "Current Trends in Mycotoxin Detection with Various Types of Biosensors" Toxins 15, no. 11: 645. https://doi.org/10.3390/toxins15110645