Ultrasonographic Evaluation of Three Approaches for Botulinum Toxin Injection into Tibialis Posterior Muscle in Chronic Stroke Patients with Equinovarus Foot: An Observational Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, H.; Chen, J.; Guo, Y.; Tan, S. Prevalence and Risk Factors for Spasticity After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 11, 1884. [Google Scholar] [CrossRef]
- Esquenazi, A.; Alfaro, A.; Ayyoub, Z.; Charles, D.; Dashtipour, K.; Graham, G.D.; McGuire, J.R.; Odderson, I.R.; Patel, A.T.; Simpson, D.M. OnabotulinumtoxinA for Lower Limb Spasticity: Guidance from a Delphi Panel Approach. PM&R 2017, 9, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Gillard, P.J.; Sucharew, H.; Kleindorfer, D.; Belagaje, S.; Varon, S.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Flaherty, M.L.; et al. The negative impact of spasticity on the health-related quality of life of stroke survivors: A longitudinal cohort study. Health Qual. Life Outcomes 2015, 13, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, A.B. Long-term modification of spasticity. J. Rehabil. Med. 2003, 35, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamato, A.; Facciorusso, S.; Spina, S.; Cinone, N.; Avvantaggiato, C.; Santoro, L.; Ciritella, C.; Smania, N.; Picelli, A.; Gasperini, G.; et al. Discontinuation of botulinum neurotoxin type-A treatment during COVID-19 pandemic: An Italian survey in post stroke and traumatic brain injury patients living with spasticity. Eur. J. Phys. Rehabil. Med. 2021, 57, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Deltombe, T.; Wautier, D.; De Cloedt, P.; Fostier, M.; Gustin, T. Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the mont-godinne interdisciplinary group. J. Rehabil. Med. 2017, 49, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamato, A.; Cinone, N.; Panza, F.; Letizia, S.; Santoro, L.; Lozupone, M.; Daniele, A.; Picelli, A.; Baricich, A.; Intiso, D.; et al. Botulinum Toxin Type A for the Treatment of Lower Limb Spasticity after Stroke. Drugs 2019, 79, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, R.; Cui, B.; Zhang, Y.; Bai, G.; Gao, S.; Li, W. Therapeutic efficacy and safety of various botulinum toxin A doses and concentrations in spastic foot after stroke: A randomized controlled trial. Neural Regen. Res. 2017, 12, 1451. [Google Scholar] [CrossRef]
- Wissel, J.; Ganapathy, V.; Ward, A.B.; Borg, J.; Ertzgaard, P.; Herrmann, C.; Haggstrom, A.; Sakel, M.; Ma, J.; Dimitrova, R.; et al. OnabotulinumtoxinA Improves Pain in Patients with Post-Stroke Spasticity: Findings from a Randomized, Double-Blind, Placebo-Controlled Trial. J. Pain Symptom Manag. 2016, 52, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cioni, M.; Esquenazi, A.; Hirai, B. Effects of botulinum toxin-A on gait velocity, step length, and base of support of patients with dynamic equinovarus foot. Am. J. Phys. Med. Rehabil. 2006, 85, 600–606. [Google Scholar] [CrossRef]
- Aktürk, S.; Büyükavcı, R.; Ersoy, Y. Functional outcomes following ultrasound-guided botulinum toxin type A injections to reduce spastic equinovarus in adult post-stroke patients. Toxicon 2018, 146, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.N.; Kuo, M.Y.; Chou, L.W. Efficacy and optimal dose of botulinum toxin a in post-stroke lower extremity spasticity: A systematic review and meta-analysis. Toxins 2021, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Ankle and Foot Spasticity Patterns in Chronic Stroke Survivors with Abnormal Gait. Toxins 2020, 12, 646. [Google Scholar] [CrossRef]
- Alter, K.E.; Karp, B.I. Ultrasound Guidance for Botulinum Neurotoxin Chemodenervation Procedures. Toxins 2018, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamato, A.; Micello, M.F.; Panza, F.; Fortunato, F.; Baricich, A.; Cisari, C.; Pilotto, A.; Logroscino, G.; Fiore, P.; Ranieri, M. Can botulinum toxin type A injection technique influence the clinical outcome of patients with post-stroke upper limb spasticity? A randomized controlled trial comparing manual needle placement and ultrasound-guided injection techniques. J. Neurol. Sci. 2014, 347, 39–43. [Google Scholar] [CrossRef]
- Walter, U.; Dressler, D. Ultrasound-guided botulinum toxin injections in neurology: Technique, indications and future perspectives. Expert Rev. Neurother. 2014, 14, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Rha, D.-W.; Im, S.H.; Lee, S.C.; Kim, S.-K. Needle Insertion into the Tibialis Posterior: Ultrasonographic Evaluation of an Anterior Approach. Arch. Phys. Med. Rehabil. 2010, 91, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Rha, D.W.; Park, E.S.; Jung, S.; Lee, S.C.; Suh, M.; Choi, H.S. Comparison of ultrasound-guided anterior and posterior approaches for needle insertion into the tibialis posterior in hemiplegic children with spastic cerebral palsy. Am. J. Phys. Med. Rehabil. 2014, 93, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Won, S.J.; Yoon, J.S. Approach for needle insertion into the tibialis posterior: An ultrasonography study. Muscle Nerve 2016, 53, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Baricich, A.; Chemello, E.; Smania, N.; Cisari, C.; Gandolfi, M.; Cinone, N.; Ranieri, M.; Santamato, A. Ultrasonographic Evaluation of Botulinum Toxin Injection Site for the Medial Approach to Tibialis Posterior Muscle in Chronic Stroke Patients with Spastic Equinovarus Foot: An Observational Study. Toxins 2017, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Oddy, M.J.; Brown, C.; Mistry, R.; Eastwood, D.M. Botulinum toxin injection site localization for the tibialis posterior muscle. J. Pediatr. Orthop. Part B 2006, 15, 414–417. [Google Scholar] [CrossRef]
- Ramirez-Castaneda, J.; Jankovic, J.; Comella, C.; Dashtipour, K.; Fernandez, H.H.; Mari, Z. Diffusion, spread, and migration of botulinum toxin. Mov. Disord. 2013, 28, 1775–1783. [Google Scholar] [CrossRef]
- Haig, A.J.; Goodmurphy, C.W.; Harris, A.R.; Ruiz, A.P.; Etemad, J. The accuracy of needle placement in lower-limb muscles: A blinded study1. Arch. Phys. Med. Rehabil. 2003, 84, 877–882. [Google Scholar] [CrossRef]
- Chin, T.Y.P.; Nattrass, G.R.; Selber, P.; Graham, H.K. Accuracy of intramuscular injection of botulinum toxin A in juvenile cerebral palsy: A comparison between manual needle placement and placement guided by electrical stimulation. J. Pediatr. Orthop. 2005, 25, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Grigoriu, A.-I.; Dinomais, M.; Rémy-Néris, O.; Brochard, S. Impact of Injection-Guiding Techniques on the Effectiveness of Botulinum Toxin for the Treatment of Focal Spasticity and Dystonia: A Systematic Review. Arch. Phys. Med. Rehabil. 2015, 96, 2067–2078.e1. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.-M.; Lugassy, M.; Weisz, D.J.; Vecchio, M.; Flanagan, S.; Simpson, D.M. Botulinum Toxin Dilution and Endplate Targeting in Spasticity: A Double-Blind Controlled Study. Arch. Phys. Med. Rehabil. 2009, 90, 9–16.e2. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, A.; Bar-On, L.; Desloovere, K.; Huenaerts, C.; Molenaers, G. Motor endplate-targeted botulinum toxin injections of the gracilis muscle in children with cerebral palsy. Dev. Med. Child Neurol. 2015, 57, 476–483. [Google Scholar] [CrossRef]
- Delnooz, C.C.S.; Veugen, L.C.; Pasman, J.W.; Lapatki, B.G.; van Dijk, J.P.; van de Warrenburg, B.P.C. The clinical utility of botulinum toxin injections targeted at the motor endplate zone in cervical dystonia. Eur. J. Neurol. 2014, 21, 1486.e98. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, B.-N.; An, X.; Chung, R.-H.; Han, S.-H. Location of the motor entry point and intramuscular motor point of the tibialis posterior muscle: For effective motor point block. Clin. Anat. 2011, 24, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.-H.; Rha, D.-W.; Lee, S.C.; Cong, L.; Lee, H.-J.; Lee, Y.-W.; Kim, H.-J.; Hu, K.-S. Intramuscular nerve distribution pattern of ankle invertor muscles in human cadaver using sihler stain. Muscle Nerve 2016, 53, 742–747. [Google Scholar] [CrossRef]
- Lagnau, P.; Lo, A.; Sandarage, R.; Alter, K.; Picelli, A.; Wissel, J.; Verduzco-Gutierrez, M.; Suputtitada, A.; Munin, M.C.; Carda, S.; et al. Ergonomic Recommendations in Ultrasound-Guided Botulinum Neurotoxin Chemodenervation for Spasticity: An International Expert Group Opinion. Toxins 2021, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.; Fan, C.; McDermott, K.; Fede, C.; Hughes, E.; Stecco, C. The crural interosseous membrane re-visited: A histological and microscopic study. Eur. J. Transl. Myol. 2019, 29, 8340. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.W.; Bruening, D.A.; Violette, V.A.; Perkins, K.V.; Thompson, C.L.; Ridge, S.T. Ultrasound Imaging Is Reliable for Tibialis Posterior Size Measurements. J. Ultrasound Med. 2020, 39, 2305–2312. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Lee, S.W.J.; Leung, J.; Kwok, T.; Woo, J. Age-associated decline of muscle mass, grip strength and gait speed: A 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr. Gerontol. Int. 2014, 14, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Steinman, S.; Barash, I.A.; Chambers, H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve 2004, 29, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve 2005, 31, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Mathevon, L.; Michel, F.; Decavel, P.; Fernandez, B.; Parratte, B.; Calmels, P. Muscle structure and stiffness assessment after botulinum toxin type A injection. A systematic review. Ann. Phys. Rehabil. Med. 2015, 58, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Hunnicutt, J.L.; Gregory, C.M. Skeletal muscle changes following stroke: A systematic review and comparison to healthy individuals. Top. Stroke Rehabil. 2017, 24, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Moreta, M.C.; Fleet, A.; Reebye, R.; McKernan, G.; Berger, M.; Farag, J.; Munin, M.C. Reliability and Validity of the Modified Heckmatt Scale in Evaluating Muscle Changes with Ultrasound in Spasticity. Arch. Rehabil. Res. Clin. Transl. 2020, 2, 100071. [Google Scholar] [CrossRef]
- Picelli, A.; Bonetti, P.; Fontana, C.; Barausse, M.; Dambruoso, F.; Gajofatto, F.; Girardi, P.; Manca, M.; Gimigliano, R.; Smania, N. Is Spastic Muscle Echo Intensity Related to the Response to Botulinum Toxin Type A in Patients with Stroke? A Cohort Study. Arch. Phys. Med. Rehabil. 2012, 93, 1253–1258. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Johnson, G.R.; Price, C.I.M.; Curless, R.H.; Barnes, M.P.; Rodgers, H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin. Rehabil. 2016, 13, 373–383. [Google Scholar] [CrossRef]
- Kaymak, B.; Kara, M.; Tok, F.; Ulaşli, A.M.; Oztürk, G.T.; Chang, K.V.; HsìAo, M.Y.; Hung, C.Y.; Yağiz On, A.; Ozçakar, L. Sonographic guide for botulinum toxin injections of the lower limb: EUROMUSCULUS/USPRM spasticity approach. Eur. J. Phys. Rehabil. Med. 2018, 54, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, E.; Muda, A.; Orlandi, D. Ultrasound Anatomy of Lower Limb Muscles; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Geiringer, S.R. Anatomic Localization for Needle Electromyography; Hanley & Belfus: London, UK, 1999; p. 153. [Google Scholar]
- Lexell, J.; Downham, D. What determines the muscle cross-sectional area? J. Neurol. Sci. 1992, 111, 113–114. [Google Scholar] [CrossRef]
- Mehrholz, J.; Wagner, K.; Rutte, K.; Meißner, D.; Pohl, M. Predictive Validity and Responsiveness of the Functional Ambulation Category in Hemiparetic Patients After Stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1314–1319. [Google Scholar] [CrossRef]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of Walking Handicap in the Stroke Population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef] [PubMed]
Age (years) mean ± SD | 59.25 ± 11.28 |
Gender (Male/Female) | 13/12 |
Time since event (years) mean ± SD | 5.58 ± 5.68 |
Side affected (right/left) | 16/9 |
Type of stroke (Ischemic/Haemorrhagic) | 15/10 |
BMI (kg/m2) mean ± SD | 26.67 ± 3.58 |
MAS Median (min–max) | 2 (2–3) |
Echogenicity in affected side Modified Heckmatt scale Median (min–max) | 3 (2–3) |
Echogenicity in unaffected side Modified Heckmatt scale Median (min–max) | 2 (2–3) |
FAC Median (min–max) | 4 (1–4) |
WHS Median (min–max) | 4 (2–5) |
Affected Side
Mean ± SD | Unaffected Side
Mean ± SD | p-Value | ||
---|---|---|---|---|
Anterior approach | TP muscle depth (mm) | 26.96 ± 3.07 | 27.29 ± 2.63 | 0.647 |
Subcutaneous thickness (mm) | 4.62 ± 2.37 | 4.86 ± 1.44 | 0.090 | |
Overlying muscle thickness (mm) | 22.34 ± 3.31 | 22.42 ± 2.64 | 0.904 | |
TP muscle thickness (mm) | 14.66 ± 1.34 | 15.62 ± 1.20 | 0.007 * | |
Safety window (mm) | 14.39 ± 2.36 | - | - | |
Medial approach | TP muscle depth (mm) | 22.50 ± 3.69 | 21.68 ± 3.74 | 0.317 |
Subcutaneous thickness (mm) | 7.93 ± 3.72 | 7.68 ± 2.59 | 0.798 | |
Overlying muscle thickness (mm) | 14.57 ± 1.81 | 13.99 ± 2.92 | 0.412 | |
TP muscle thickness (mm) | 21.87 ± 1.74 | 22.32 ± 1.75 | 0.300 | |
Safety window (mm) | 12.72 ± 2.50 | - | - | |
Posterior approach | TP muscle depth (mm) | 29.76± 3.52 | 29.12 ± 2.45 | 0.353 |
Subcutaneous thickness (mm) | 7.74 ± 2.67 | 7.34 ± 2.43 | 0.467 | |
Overlying muscle thickness (mm) | 22.42 ± 2.64 | 21.78 ± 1.66 | 0.139 | |
TP muscle thickness (mm) | 15.07 ± 0.55 | 15.69 ± 1.05 | 0.015 * | |
Safety window (mm) | 11.97 ± 0.95 | - | - | |
Cross-sectional area (mm2) | 31.42 ± 3.66 | 36.09 ± 5.27 | <0.001 * |
Anterior—Medial | Anterior—Posterior | Medial—Posterior | ||||
---|---|---|---|---|---|---|
Χ2 | df | p-Value | p-Value * | |||
Depth | 36.273 | 2 | p < 0.001 | 0.004 | 0.033 | <0.001 |
Thickness | 39.120 | 2 | p < 0.001 | <0.001 | 0.609 | <0.001 |
Subcutaneous tissue | 26.727 | 2 | p < 0.001 | <0.001 | <0.001 | 1.000 |
Overlying muscle | 35.280 | 2 | p < 0.001 | <0.001 | 1.000 | <0.001 |
Safety window | 5.840 | 2 | p > 0.05 | - | - | - |
Anterior Approach | Medial Approach | Posterior Approach | |
---|---|---|---|
Advantages | Patient supine position Less subcutaneous tissue Easy US TP recognition Proximity to MEP | Patient supine position Less TP depth Less overlying muscle More TP thickness | Full visualization of target |
Disadvantage | Partial display of target More TP depth More overlying muscle IM perforation Painful infiltrative technique | Partial display of target Distance to MEP | Patient prone position Difficult US TP recognition More TP depth More subcutaneous tissue More overlying muscle Distance to MEP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spina, S.; Facciorusso, S.; Botticelli, C.; Intiso, D.; Ranieri, M.; Colamaria, A.; Fiore, P.; Ciritella, C.; Genêt, F.; Santamato, A. Ultrasonographic Evaluation of Three Approaches for Botulinum Toxin Injection into Tibialis Posterior Muscle in Chronic Stroke Patients with Equinovarus Foot: An Observational Study. Toxins 2021, 13, 829. https://doi.org/10.3390/toxins13110829
Spina S, Facciorusso S, Botticelli C, Intiso D, Ranieri M, Colamaria A, Fiore P, Ciritella C, Genêt F, Santamato A. Ultrasonographic Evaluation of Three Approaches for Botulinum Toxin Injection into Tibialis Posterior Muscle in Chronic Stroke Patients with Equinovarus Foot: An Observational Study. Toxins. 2021; 13(11):829. https://doi.org/10.3390/toxins13110829
Chicago/Turabian StyleSpina, Stefania, Salvatore Facciorusso, Chiara Botticelli, Domenico Intiso, Maurizio Ranieri, Antonio Colamaria, Pietro Fiore, Chiara Ciritella, François Genêt, and Andrea Santamato. 2021. "Ultrasonographic Evaluation of Three Approaches for Botulinum Toxin Injection into Tibialis Posterior Muscle in Chronic Stroke Patients with Equinovarus Foot: An Observational Study" Toxins 13, no. 11: 829. https://doi.org/10.3390/toxins13110829
APA StyleSpina, S., Facciorusso, S., Botticelli, C., Intiso, D., Ranieri, M., Colamaria, A., Fiore, P., Ciritella, C., Genêt, F., & Santamato, A. (2021). Ultrasonographic Evaluation of Three Approaches for Botulinum Toxin Injection into Tibialis Posterior Muscle in Chronic Stroke Patients with Equinovarus Foot: An Observational Study. Toxins, 13(11), 829. https://doi.org/10.3390/toxins13110829