Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Feed Sample Homogeneity during Sample Preparation
2.2. Occurrence of 11 Mycotoxins in Feed Ingredients and Compound Feeds
2.2.1. Aflatoxins B1, B2, G1, and G2
2.2.2. Deoxynivalenol
2.2.3. Fumonisins B1 and B2
2.2.4. Ochratoxin A
2.2.5. T-2 and HT-2 Toxins
2.2.6. Zearalenone
2.3. Co-Occurrence of Mycotoxins in Feed Ingredients and Compound Feeds
3. Conclusions
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Samples
4.3. Preparation of Standard Solutions
4.4. Calibration Curve
4.5. Sample Preparation Using Optimized QuEChERS Method
4.6. LC–MS/MS Analysis
4.7. Data Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095–104106. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Herebian, D.; Zuhlke, S.; Lamshoft, M.; Spiteller, M. Multi-mycotoxin analysis in complex biological matrices using LC-ESI/MS: Experimental study using triple stage quadrupole and LTQ-Orbitrap. J. Sep. Sci. 2009, 32, 939–948. [Google Scholar] [CrossRef]
- Frenich, A.G.; Romero-Gonzalez, R.; Gomez-Perez, M.L.; Vidal, J.L. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.; Dalcero, A.M.; Rosa, C.A.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Food safety implications of ochratoxin A in animal-derived food products. Vet. J. 2012, 192, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kamkar, A. A study on the occurrence of aflatoxin M1 in Iranian Feta cheese. Food Control 2006, 17, 768–775. [Google Scholar] [CrossRef]
- Persi, N.; Pleadin, J.; Kovacevic, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Beltran, E.; Ibanez, M.; Sancho, J.V.; Hernandez, F. Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1801–1809. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010, 3, 94–99. [Google Scholar] [CrossRef]
- Yu, S.; Jia, B.; Liu, N.; Yu, D.; Wu, A. Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells. Int. J. Mol. Sci. 2020, 21, 5917. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Agents Classified by the IARC Monographs, Volumes 1–104; International Agency for Research on Cancer: Lyon, France, 2016; Volume 7, pp. 1–25. [Google Scholar]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Weaver, A.C.; Adams, N.; Yiannikouris, A. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Appl. Anim. Sci. 2020, 36, 19–25. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Wu, L.; Zhou, S.; Gong, Z.; Zhao, Y.; Wu, Y. Development of a Sensitive and Reliable UHPLC-MS/MS Method for the Determination of Multiple Urinary Biomarkers of Mycotoxin Exposure. Toxins 2020, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rausch, A.K.; Brockmeyer, R.; Schwerdtle, T. Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals. J. Agric. Food Chem. 2020, 68, 4657–4669. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.F.; Yang, M.H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitaker, T.B. Standardisation of mycotoxin sampling procedures: An urgent necessity. Food Control 2003, 14, 233–237. [Google Scholar] [CrossRef]
- National Law Information Center. Available online: https://www.law.go.kr/admRulSc.do?menuId=5&subMenuId=41&tabMenuId=183&query=%EC%82%AC%EB%A3%8C%20%EB%93%B1%EC%9D%98%20%EA%B8%B0%EC%A4%80%20%EB%B0%8F%20%EA%B7%9C%EA%B2%A9#liBgcolor0 (accessed on 8 September 2021).
- Steiner, D.; Krska, R.; Malachova, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, M.; Shoeibi, S.; Rastegar, H.; Elmi, M.; Mousavi Khaneghah, A. Simultaneous analysis of mycotoxins in corn flour using LC/MS-MS combined with a modified QuEChERS procedure. Toxin Rev. 2017, 37, 187–195. [Google Scholar] [CrossRef]
- Fabregat-Cabello, N.; Zomer, P.; Sancho, J.V.; Roig-Navarro, A.F.; Mol, H.G.J. Comparison of approaches to deal with matrix effects in LC-MS/MS based determinations of mycotoxins in food and feed. World Mycotoxin J. 2016, 9, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Atzrodt, J.; Derdau, V.; Kerr, W.J.; Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem. Int. Ed. Engl. 2018, 57, 1758–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronsema, K.J.; Bischoff, R.; van de Merbel, N.C. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 893–894, 1–14. [Google Scholar] [CrossRef]
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-mycotoxins Analysis in Dried Fruit by LC/MS/MS and a Modified QuEChERS Procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Jo, H.-W.; Park, M.-K.; Heo, H.-M.; Jeon, H.-J.; Choi, S.-D.; Lee, S.-E.; Moon, J.-K. Simultaneous determination of 13 mycotoxins in feedstuffs using QuEChERS extraction. Appl. Biol. Chem. 2021, 64, 34–45. [Google Scholar] [CrossRef]
- Joo, M.; Baek, S.H.; Cheon, S.A.; Chun, H.S.; Choi, S.W.; Park, T.J. Development of aflatoxin B1 aptasensor based on wide-range fluorescence detection using graphene oxide quencher. Colloids Surf. B Biointerfaces 2017, 154, 27–32. [Google Scholar] [CrossRef]
- Pantano, L.; La Scala, L.; Olibrio, F.; Galluzzo, F.G.; Bongiorno, C.; Buscemi, M.D.; Macaluso, A.; Vella, A. QuEChERS LC-MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. Int. J. Environ. Res. Public Health 2021, 18, 3774. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Alcantara-Duran, J.; Moreno-Gonzalez, D.; Garcia-Reyes, J.F.; Molina-Diaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Storm, I.M.; Rasmussen, P.H.; Smedsgaard, J.; Nielsen, K.F. Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal. Bioanal. Chem. 2010, 397, 765–776. [Google Scholar] [CrossRef] [Green Version]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Steimling, J.A.; Konschnik, J.D.; Grossman, S.L.; Kahler, T.W. Quantitation of Mycotoxins in Four Food Matrices Comparing Stable Isotope Dilution Assay (SIDA) with Matrix-Matched Calibration Methods by LC-MS/MS. J. AOAC Int. 2019, 102, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Facorro, R.; Llompart, M.; Dagnac, T. Combined (d)SPE-QuEChERS Extraction of Mycotoxins in Mixed Feed Rations and Analysis by High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Toxins 2020, 12, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Jartín, J.M.; Alfonso, A.; Sainz, M.J.; Vieytes, M.R.; Botana, L.M. Multi-detection method for mycotoxins with a modified QuEChERS extraction in feed and development of a simple detoxification procedure. Anim. Feed Sci. Technol. 2021, 272, 114745. [Google Scholar] [CrossRef]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef]
- AOAC. Sub-Committee on Feed Additives and Contaminants; AOAC: Rockville, MD, USA, 2008; pp. 2041–2042. [Google Scholar]
- Food and Agriculture Organization. Codex General Standard for Contaminants and Toxins in Food and Feed (Codex Stan 193–1995); Food and Agriculture Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Hygienical Standard for Feeds; GB/T 13078-2017; National Criterion of China: Beijing, China, 2017.
- Food and Agricultural Materials Inspection Center Reference Value of Harmful Substances in Feed. Available online: http://www.famic.go.jp/ffis/feed/r_safety/r_feeds_safetyj22.html (accessed on 8 September 2021).
- European Commission (EC). COMMISSION REGULATION (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, L70, 12–34. [Google Scholar]
- Kim, D.H.; Hong, S.Y.; Kang, J.W.; Cho, S.M.; Lee, K.R.; An, T.K.; Lee, C.; Chung, S.H. Simultaneous Determination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, M.J.; Kim, H.J.; Cho, S.K.; Park, H.J.; Jeong, M.H.; Yildiz, F. Analytical method development and monitoring of Aflatoxin B1, B2, G1, G2 and Ochratoxin A in animal feed using HPLC with Fluorescence detector and photochemical reaction device. Cogent Food Agric. 2017, 3, 1419788–1419795. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, L.; Liu, M.; Su, Y.T.; Xie, W.M.; Zhang, N.Y.; Dai, J.F.; Wang, Y.; Rajput, S.A.; Qi, D.S.; et al. Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China. Toxins 2018, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhang, L.; Xu, Z.; Liu, X.; Chen, L.; Dai, J.; Karrow, N.A.; Sun, L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Aoyama, K.; Ishibashi, T. Sterigmatocystin and aflatoxin B1 contamination of corn, soybean meal, and formula feed in Japan. Mycotoxin Res. 2018, 34, 21–27. [Google Scholar] [CrossRef]
- Uegaki, R.; Tsunoda, A. Mycotoxin Contamination in Japanese Domestic Feed. Food Saf. 2018, 6, 96–100. [Google Scholar] [CrossRef]
- Grajewski, J.; Blajet-Kosicka, A.; Twaruzek, M.; Kosicki, R. Occurrence of mycotoxins in Polish animal feed in years 2006–2009. J. Anim. Physiol. Anim. Nutr. 2012, 96, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Bilal, T.; Aksakal, D.H.; Sünnetci, S.; Keser, O.; Eseceli, H. Detection of Aflatoxin, Zearalenone and Deoxynivalenol in Some Feed and Feedstuffs in Turkey. Pak. Vet. J. 2014, 34, 459–463. [Google Scholar]
- Arroyo-Manzanares, N.; Rodriguez-Estevez, V.; Arenas-Fernandez, P.; Garcia-Campana, A.M.; Gamiz-Gracia, L. Occurrence of Mycotoxins in Swine Feeding from Spain. Toxins 2019, 11, 342. [Google Scholar] [CrossRef] [Green Version]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission (EC). COMMISSION RECOMMENDATION of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, L229, 7–9. [Google Scholar]
- Park, J.; Chang, H.; Kim, D.; Chung, S.; Lee, C. Long-Term Occurrence of Deoxynivalenol in Feed and Feed Raw Materials with a Special Focus on South Korea. Toxins 2018, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Li, J.; Li, Y.; Li, T.; He, Q.; Tang, Y.; Liu, H.; Su, Y.; Yin, Y.; Liao, P. Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different Province in China. J. Anim. Sci. Biotechnol. 2016, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Almeida, I.; Martins, H.M.; Santos, S.; Costa, J.M.; Bernardo, F. Co-occurrence of mycotoxins in swine feed produced in Portugal. Mycotoxin Res. 2011, 27, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, I.H.; Do, W.H.; Nam, W.S.; Li, H.; Jang, H.S.; Lee, C. Incidence and levels of deoxynivalenol, fumonisins and zearalenone contaminants in animal feeds used in Korea in 2012. Toxins 2013, 6, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Chang, H.; Hong, S.; Kim, D.; Chung, S.; Lee, C. A Decrease of Incidence Cases of Fumonisins in South Korean Feedstuff between 2011 and 2016. Toxins 2017, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Ok, H.E.; Kang, Y.W.; Kim, M.; Chun, H.S. T-2 and HT-2 toxins in cereals and cereal-based products in South Korea. Food Addit. Contam. Part B Surveill. 2013, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, W.; Park, J.H.; Kim, D.; Kim, C.R.; Chung, S.; Lee, C. The Occurrence of Zearalenone in South Korean Feedstuffs between 2009 and 2016. Toxins 2017, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Bensassi, F.; Gallerne, C.; Sharaf el Dein, O.; Hajlaoui, M.R.; Lemaire, C.; Bacha, H. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Le Drean, G.; Auffret, M.; Batina, P.; Arnold, F.; Sibiril, Y.; Arzur, D.; Parent-Massin, D. Myelotoxicity of trichothecenes and apoptosis: An in vitro study on human cord blood CD34+ hematopoietic progenitor. Toxicol. In Vitro 2005, 19, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.H.; Lei, M.Y.; Zhang, N.Y.; Zhao, L.; Krumm, C.S.; Qi, D.S. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem. Toxicol. 2014, 74, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.H.; Lei, M.Y.; Zhang, N.Y.; Gao, X.; Li, C.; Krumm, C.S.; Qi, D.S. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. Toxicon 2015, 95, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Atalla, M.M.; Hassanein, N.M.; El-Beih, A.A.; Youssef, Y.A. Mycotoxin production in wheat grains by different Aspergilli in relation to different relative humidities and storage periods. Nahrung 2003, 47, 6–10. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankevičienė, A.; Butkutė, B.; Dabkevičius, Z. Peculiarities of cereal grain co-contamination with Fusarium mycotoxins. Zemdirb. Agric. 2011, 98, 415–420. [Google Scholar]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Bryla, M.; Waskiewicz, A.; Podolska, G.; Szymczyk, K.; Jedrzejczak, R.; Damaziak, K.; Sulek, A. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
Sample | No. of Samples | No. of Detected Samples 1 (%) | No. of Positive Samples 2 (%) | Minimum (µg/kg) | Median (µg/kg) | Maximum (µg/kg) | Guidance Limit 3 (ppb) | |
---|---|---|---|---|---|---|---|---|
Aflatoxin B1 + B2 + G1 + G2 | ||||||||
Feed ingredients | Grain | 12 | - | - | - | - | - | 50 |
Bran | 25 | - | - | - | - | - | 50 | |
A. protein 4 | 27 | - | - | - | - | - | 50 | |
V. meal 5 | 40 | 1 (2.5) | 1 (2.5) | 159 | 159 | 159 | 50 | |
Mineral | 13 | - | - | - | - | - | 50 | |
Mix | 63 | - | - | - | - | - | 50 | |
Compound feeds | Poultry | 38 | - | - | - | - | - | 10 |
Pig | 53 | - | - | - | - | - | 10 | |
Dairy | 20 | - | - | - | - | - | 10 | |
Cattle | 42 | - | - | - | - | - | 10 | |
Pet | 403 | - | - | - | - | - | 10 | |
Deoxynivalenol | ||||||||
Feed ingredients | Grain | 12 | 2 (16.6) | 1 (8.3) | 575 | 9680 | 18,785 | 10,000 |
Bran | 25 | 7 (28.0) | - | 464 | 1738 | 3478 | 10,000 | |
A. protein | 27 | - | - | - | - | - | 10,000 | |
V. meal | 40 | 7 (17.5) | - | 79 | 821 | 1495 | 10,000 | |
Mineral | 13 | - | - | - | - | - | 10,000 | |
Mix | 63 | 5 (7.9) | - | 54 | 248 | 542 | 10,000 | |
Compound feeds | Poultry | 38 | 28 (73.7) | - | 55 | 512 | 2941 | 5000 |
Pig | 53 | 42 (79.2) | 2 (3.8) | 53 | 328 | 1274 | 900 | |
Dairy | 20 | 10 (50.0) | 1 (5.0) | 138 | 2008 | 2525 | 2000 | |
Cattle | 42 | 27 (64.3) | 5 (11.9) | 74 | 1884 | 13,181 | 2000 | |
Pet | 403 | 108 (26.8) | 1 (0.2) | 51 | 472 | 19,529 | 5000 | |
Fumonisin B1 + B2 | ||||||||
Feed ingredients | Grain | 12 | 4 (33.3) | - | 67 | 2054 | 7958 | 60,000 |
Bran | 25 | 16 (64.0) | - | 60 | 2387 | 10,486 | 60,000 | |
A. protein | 27 | - | - | - | - | - | 60,000 | |
V. meal | 40 | 16 (40.0) | - | 43 | 1064 | 2808 | 60,000 | |
Mineral | 13 | - | - | - | - | - | 60,000 | |
Mix | 63 | 7 (11.1) | - | 195 | 757 | 1462 | 60,000 | |
Compound feeds | Poultry | 38 | 34 (89.5) | - | 69 | 812 | 5985 | 20,000 |
Pig | 53 | 48 (90.6) | - | 80 | 967 | 2059 | 5000 | |
Dairy | 20 | 19 (95.0) | - | 127 | 1286 | 3668 | 50,000 | |
Cattle | 42 | 42 (100.0) | - | 66 | 2360 | 23,422 | 50,000 | |
Pet | 403 | 251 (62.3) | - | 50 | 903 | 3397 | 5000 | |
Ochratoxin A | ||||||||
Feed ingredients | Grain | 12 | - | - | - | - | - | 250 |
Bran | 25 | 1 (4.0) | - | 61 | 61 | 61 | 250 | |
A. protein | 27 | - | - | - | - | - | 250 | |
V. meal | 40 | - | - | - | - | - | 250 | |
Mineral | 13 | - | - | - | - | - | 250 | |
Mix | 63 | - | - | - | - | - | 250 | |
Compound feeds | Poultry | 38 | 1 (2.6) | - | 18 | 18 | 18 | 200 |
Pig | 53 | - | - | - | - | - | 200 | |
Dairy | 20 | - | - | - | - | - | 200 | |
Cattle | 42 | - | - | - | - | - | 200 | |
Pet | 403 | 1 (0.2) | - | 11 | 11 | 11 | 200 | |
T-2 toxin, HT-2 toxin | ||||||||
Feed ingredients | Grain | 12 | - | - | - | - | - | 500 |
Bran | 25 | - | - | - | - | - | 500 | |
A. protein | 27 | - | - | - | - | - | 500 | |
V. meal | 40 | 1 (2.5) | - | 40 | 40 | 40 | 500 | |
Mineral | 13 | - | - | - | - | - | 500 | |
Mix | 63 | - | - | - | - | - | 500 | |
Compound feeds | Poultry | 38 | - | - | - | - | - | 250 |
Pig | 53 | - | - | - | - | - | 250 | |
Dairy | 20 | - | - | - | - | - | 250 | |
Cattle | 42 | - | - | - | - | - | 250 | |
Pet | 403 | - | - | - | - | - | 250 | |
Zearalenone | ||||||||
Feed ingredients | Grain | 12 | 4 (33.3) | 1 (8.3) | 16 | 4552 | 18,113 | 3000 |
Bran | 25 | 12 (48.0) | - | 15 | 523 | 1709 | 3000 | |
A. protein | 27 | 1 (3.7) | - | 18 | 18 | 18 | 3000 | |
V. meal | 40 | 9 (22.5) | - | 15 | 275 | 931 | 3000 | |
Mineral | 13 | - | - | - | - | - | 3000 | |
Mix | 63 | 8 (12.7) | - | 15 | 61 | 121 | 3000 | |
Compound feeds | Poultry | 38 | 25 (65.8) | 1 (2.6) | 15 | 128 | 1370 | 500 |
Pig | 53 | 36 (67.9) | 2 (3.8) | 14 | 44 | 143 | 100 | |
Dairy | 20 | 18 (90.0) | 2 (10.0) | 24 | 286 | 2212 | 500 | |
Cattle | 42 | 37 (88.1) | 5 (11.9) | 21 | 368 | 18,645 | 500 | |
Pet | 403 | 130 (32.3) | 1 (0.2) | 13 | 192 | 17,268 | 1000 |
Sample | No. of Samples | No. of Co-OccurrenceSamples (%) | DON 1 + FBs 2 (%) | DON + ZEN 3 (%) | FBs + OTA 4 (%) | FBs + T-2/HT-2 (%) | FBs + ZEN (%) | DON + FBs + OTA (%) | DON + FBs + ZEN (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Feed ingredients | Grain | 12 | 2 (16.7) | - | - | - | - | 1 (8.3) | - | 1 (8.3) |
Bran | 25 | 12 (48.0) | 1 (4.0) | - | - | - | 5 (20.0) | - | 6 (24.0) | |
Animal protein | 27 | - | - | - | - | - | - | - | - | |
Vegetable meal | 40 | 10 (25.0) | - | - | - | 1 (2.5) | 3 (7.5) | - | 6 (15.0) | |
Mineral | 13 | - | - | - | - | - | - | - | - | |
Mix | 63 | 6 (9.5) | 1 (1.6) | - | - | - | 3 (4.8) | - | 2 (3.2) | |
Compound feeds | Poultry | 38 | 31 (81.6) | 5 (13.2) | - | - | - | 3 (7.9) | 1 (2.6) | 22 (57.9) |
Pig | 53 | 42 (79.2) | 6 (11.3) | - | - | - | 3 (5.7) | - | 33 (62.3) | |
Dairy | 20 | 19 (95.0) | 1 (5.3) | - | - | - | 9 (45.0) | - | 9 (45.0) | |
Cattle | 42 | 40 (95.2) | 3 (7.1) | - | - | - | 13 (31.0) | - | 24 (57.1) | |
Pet | 403 | 160 (39.7) | 35 (8.7) | 3 (0.7) | 1 (0.2) | - | 57 (14.1) | - | 64 (15.9) |
Compound | Ionization | RT (min) | Precursor Ion (m/z) | Quantitative Ion (m/z) | Qualitative Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|---|---|
Aflatoxin B1 | [M+H]+ | 10.7 | 313.0 | 285.0 | 241.0 | −25, −40 |
Aflatoxin B2 | [M+H]+ | 10.4 | 315.0 | 259.1 | 287.2 | −30, −27 |
Aflatoxin G1 | [M+H]+ | 10.2 | 328.9 | 243.1 | 311.1 | −27, −23 |
Aflatoxin G2 | [M+H]+ | 9.7 | 331.0 | 313.1 | 245.2 | −26, −31 |
Deoxynivalenol | [M+H]+ | 6.4 | 297.0 | 249.3 | 231.1 | −13, −14 |
Fumonisin B1 | [M+H]+ | 11.9 | 722.3 | 352.2 | 334.3 | −37, −40 |
Fumonisin B2 | [M+H]+ | 13.1 | 706.3 | 336.4 | 354.2 | −38, −33 |
Ochratoxin A | [M+H]+ | 13.2 | 403.9 | 239.1 | 358.1 | −25, −16 |
T-2 toxin | [M+NH4]+ | 12.6 | 484.2 | 215.2 | 305.2 | −21, −16 |
HT-2 toxin | [M+NH4]+ | 11.9 | 442.0 | 263.2 | 215.2 | −15, −15 |
Zearalenone | [M−H]− | 13.3 | 317.0 | 175.3 | 131.3 | 24, 29 |
13C17 Aflatoxin B1 (IS) | [M+H]+ | 10.6 | 330.0 | 301.1 | 255.1 | −25, −38 |
13C17 Aflatoxin B2 (IS) | [M+H]+ | 10.3 | 332.0 | 303.1 | 257.1 | −28, −40 |
13C17 Aflatoxin G1 (IS) | [M+H]+ | 9.9 | 346.0 | 257.0 | 328.1 | −29, −24 |
13C17 Aflatoxin G2 (IS) | [M+H]+ | 9.6 | 348.0 | 330.1 | 301.2 | −25, −29 |
13C15 Deoxynivalenol (IS) | [M+H]+ | 6.4 | 312.0 | 215.1 | 198.4 | −22, −21 |
13C34 Fumonisin B1 (IS) | [M+H]+ | 11.8 | 756.0 | 374.4 | 356.4 | −39, −42 |
13C34 Fumonisin B2 (IS) | [M+H]+ | 13.1 | 740.0 | 376.4 | 358.4 | −36, −39 |
Ochratoxin A-d5 (IS) | [M+H]+ | 13.2 | 409.2 | 363.2 | 239.1 | −17, −25 |
13C24 T-2 toxin (IS) | [M+NH4]+ | 12.5 | 508.4 | 322.2 | 229.2 | −16, −20 |
13C22 HT-2 toxin (IS) | [M+NH4]+ | 11.8 | 464.0 | 278.2 | 229.2 | −16, −16 |
13C18 Zearalenone (IS) | [M−H]− | 13.2 | 335.0 | 185.2 | 140.2 | 25, 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.; Jang, S.; Jo, H.; Kim, H.; Lee, S.; Yun, H.; Jeong, M.; Moon, J.; Na, T.; Cho, H. Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds. Toxins 2021, 13, 767. https://doi.org/10.3390/toxins13110767
Seo H, Jang S, Jo H, Kim H, Lee S, Yun H, Jeong M, Moon J, Na T, Cho H. Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds. Toxins. 2021; 13(11):767. https://doi.org/10.3390/toxins13110767
Chicago/Turabian StyleSeo, Hyungju, Sunyeong Jang, Hyeongwook Jo, Haejin Kim, Seunghwa Lee, Hyejeong Yun, Minhee Jeong, Joonkwan Moon, Taewoong Na, and Hyunjeong Cho. 2021. "Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds" Toxins 13, no. 11: 767. https://doi.org/10.3390/toxins13110767
APA StyleSeo, H., Jang, S., Jo, H., Kim, H., Lee, S., Yun, H., Jeong, M., Moon, J., Na, T., & Cho, H. (2021). Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds. Toxins, 13(11), 767. https://doi.org/10.3390/toxins13110767