Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology
Abstract
:1. Introduction
2. Results
2.1. Model 1: In Vitro (FEFANA) Protocol for Assessing AFB1 Sequestration
2.2. Model 2: In Vitro Assessment of AFB1 Binding in Simulated Stomach Conditions
2.3. Model 3: Ex Vivo Demonstration of Binding Efficiency in the Lower Gastro-Intestinal Tract
2.4. Model 4: Impact of Adsorption Capacity on Transmission of AFB1 through Live Intestinal Tissue
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Model 1: In Vitro (FEFANA) Protocol for Assessing AFB1 Sequestration
5.2. Model 2: In Vitro Assessment of AFB1 Binding in Simulated Stomach Conditions
5.3. Model 3: Ex Vivo Demonstration of Binding Efficiency in the Lower Gastro-Intestinal Tract
5.4. Model 4: Impact of Adsorption Capacity on Transmission of AFB1 through Live Intestinal Tissue
5.5. Statistical Analysis
5.5.1. Model 1
5.5.2. Model 2
5.5.3. Model 3
5.5.4. Model 4
Author Contributions
Funding
Conflicts of Interest
References
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Asao, T.; Büchi, G.; Abdel-Kader, M.M.; Chang, S.B.; Wick, E.L.; Wogan, G.N. Aflatoxins B and G. J. Am. Chem. Soc. 1963, 85, 1706–1707. [Google Scholar] [CrossRef]
- Pitt, J.I. Toxigenic fungi and mycotoxins. Br. Med. Bull. 2000, 56, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.J.; Hernández, E. In situ absorption of aflatoxins in rat small intestine. Mycopathologia 1996, 134, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Moschini, M.; Masoero, F. Aflatoxins absorption in the gastro-intestinal tract and in the vaginal mucosa in lactating dairy cows. Ital. J. Anim. Sci. 2008, 7, 53–63. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, L.; Zhang, N.Y.; Karrow, N.A.; Krumm, C.S.; Qi, D.S.; Sun, L.H. Aflatoxin B 1 metabolism: Regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat. Res. Rev. Mutat. Res. 2018, 778, 79–89. [Google Scholar] [CrossRef]
- Wogan, G.N.; Kensler, T.W.; Groopman, J.D. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Rotimi, O.A.; Rotimi, S.O.; Goodrich, J.M.; Adelani, I.B.; Agbonihale, E.; Talabi, G. Time-course effects of acute aflatoxin B1 exposure on hepatic mitochondrial lipids and oxidative stress in rats. Front. Pharmacol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Huertero, F.; Zaragoza-Ojeda, M.; Sánchez-Alarcón, J.; Milić, M.; Klarić, M.Š.; Montiel-González, J.M.; Valencia-Quintana, R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front. Microbiol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kujawa, M. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar] [CrossRef] [Green Version]
- Massey, T.E.; Stewart, R.K.; Daniels, J.M.; Liu, L. Biochemical and Molecular Aspects of Mammalian Susceptibility to Aflatoxin B1 Carcinogenicity. Proc. Soc. Exp. Biol. Med. 1995, 208, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed | FDA, U.S. Food Drug Adm. Cent. Food Saf. Appl. Nutr. 2000. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed (accessed on 5 May 2020).
- European Commission. Directive 2002/32/EC of the European Parliament and of the European Council of May 7th 2002 on undesirable substances in animal feed-Council statement. Off. J. Eur. Union. 2002, L140, 10–22. [Google Scholar]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Whitaker, T.B.; Slate, A.B.; Johansson, A.S. Sampling Feeds for Mycotoxin Analysis; Diaz, D., Mycotoxin Blue, B., Eds.; Nottingham University Press: Nottingham, UK, 2005; pp. 1–23. [Google Scholar]
- Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union. 2006, 70, 12–34. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&qid=1490946469496&from=NL (accessed on 15 December 2020).
- Niderkorn, V.; Boudra, H.; Morgavi, D. Les fusariotoxines: Comment limiter leur présence dans les ensilages et leur impact chez les ruminants? Fourrag 2007, 189, 111–123. [Google Scholar]
- Firmin, S.; Gandia, P.; Morgavi, D.P.; Houin, G.; Jouany, J.P.; Bertin, G.; Boudra, H. Modification of aflatoxin B1 and ochratoxin a toxicokinetics in rats administered a yeast cell wall preparation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Firmin, S.; Morgavi, D.P.; Yiannikouris, A.; Boudra, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. J. Dairy Sci. 2011, 94, 5611–5619. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome, and growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef] [Green Version]
- FEFANA. Animal feeding-stuffs–Determination of in vitro efficacy of Mycotoxin Inactivators based on adsorption assay of Aflatoxin B1. In DRAFT Mycotoxin Inactivators: Adsorption Method. 2009. [Google Scholar]
- Yiannikouris, A.; Kettunen, H.; Apajalahti, J.; Pennala, E.; Moran, C.A. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; Poughon, L.; Cameleyre, X.; Dussap, C.; Jouany, J.; François, J. A novel technique to evaluate interactions between Saccharomyces cerevisiae cell wall and mycotoxins: Application to zearalenone. Biotechnol. Lett. 2003, 10, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; André, G.; Buléon, A.; Jeminet, G.; Canet, I.; François, J.; Bertin, G.; Jouany, J.P. Comprehensive conformational study of key interactions involved in zearalenone complexation with β-D-glucans. Biomacromolecules 2004, 5, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, S.; Yiannikouris, A.; Apajalahti, J.; Moran, C.A. Comprehensive evaluation of the efficiency of yeast cell wall extract to adsorb ochratoxin A and mitigate accumulation of the toxin in broiler chickens. Toxins 2020, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fochesato, A.S.; Cuello, D.; Poloni, V.; Galvagno, M.A.; Dogi, C.A.; Cavaglieri, L.R. Aflatoxin B1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC007 in a gastrointestinal tract-simulated model. J. Appl. Microbiol. 2019, 126, 223–229. [Google Scholar] [CrossRef]
- Li, J.J.; Suo, D.C.; Su, X.O. Binding capacity for aflatoxin B1 by different adsorbents. Agric. Sci. China 2010, 9, 449–456. [Google Scholar] [CrossRef]
- Jaynes, W.F.; Zartman, R.E.; Hudnall, W.H. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Tangni, E.K.; de Rouck, G.; Potel, A.; de Meeûs, L.; Aerts, G.; Larondelle, Y. Towards Mycotoxin Control in Brewing: Adfimax® as a novel promising solution to overcome this challenge. In Proceedings of the 30th International Congress European Brewery Convention, Prague, Czech Republic, 14–19 May 2005; p. 161. [Google Scholar]
- Frassoldati, E.B.T.-R.M.; Ranzi, C. Molecular Sciences and Chemical Engineering, Modeling of Thermochemical Conversion of Biomasses; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Singh, A.K.; Jha, R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Anim. Nutr. 2019, 5, 217–226. [Google Scholar] [CrossRef]
- Cabib, E.; Roh, D.H.; Schmidt, M.; Crotti, L.B.; Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 2001, 276, 19679–19682. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Uscanga, B.; François, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef]
- Sletmoen, M.; Stokke, B.T. Higher order structure of (1,3)-β-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers 2008, 89, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Ovalle, R.; Lim, S.T.; Holder, B.; Jue, C.K.; Moore, C.W.; Lipke, P.N. A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 1998, 14, 1159–1166. [Google Scholar] [CrossRef]
- Yiannikouris, A.; André, G.; Poughon, L.; François, J.; Dussap, C.; Jeminet, G.; Bertin, G.; Jouany, J.-P. Chemical and Conformational Study of the Interactions Involved in Mycotoxin Complexation with β-D-Glucans. Biomacromolecules 2006, 7, 1147–1155. [Google Scholar] [CrossRef]
- Kolawole, O.; Meneely, J.; Greer, B.; Chevallier, O.; Jones, D.S.; Connolly, L.; Elliott, C. Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins 2019, 11, 659. [Google Scholar] [CrossRef] [Green Version]
- Lipke, P.N.; Ovalle, R. Cell wall architecture in yeast: New structure and new challenges. J. Bacteriol. 1998, 180, 3735–3740. [Google Scholar] [CrossRef] [Green Version]
- Ramales-Valderrama, R.; Vázquez-Durán, A.; Méndez-Albores, A. Biosorption of B-aflatoxins using biomasses obtained from formosa firethorn [Pyracantha koidzumii (Hayata) Rehder]. Toxins 2016, 8, 218. [Google Scholar] [CrossRef]
- Leal, J.; Smyth, H.D.C.; Gosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2018, 532, 555–572. [Google Scholar] [CrossRef]
- Speight, N. Mycotoxin-Related Illness, 2nd ed.; Kohlstadt, I., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, Fl, USA, 2012; pp. 821–850. [Google Scholar]
- Wang, J.; Tang, L.; Glenn, T.C.; Wang, J.S. Aflatoxin B1 induced compositional changes in gut microbial communities of male F344 rats. Toxicol. Sci. 2016, 150, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Iacob, S.; Iacob, D.G.; Luminos, L.M. Intestinal microbiota as a host defense mechanism to infectious threats. Front. Microbiol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sergent, T.; Ribonnet, L.; Kolosova, A.; Garsou, S.; Schaut, A.; de Saeger, S.; van Peteghem, C.; Larondelle, Y.; Pussemier, L.; Schneider, Y.J. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem. Toxicol. 2008, 46, 813–841. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zuo, Z.; Zhu, P.; Wang, F.; Yin, H.; Peng, X.; Fang, J.; Cui, H.; Gao, C.; Song, H.; et al. A study on the expression of apoptotic molecules related to death receptor and endoplasmic reticulum pathways in the jejunum of AFB1-intoxicated chickens. Oncotarget 2017, 8, 89655–89664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirr, H.W.; Schabort, J.C. Afaltoxin B1 transport in rat blood plasma. Binding to albumin in vivo and in vitro and spectrofluorimetric studies into the nature of the interaction. Biochim. Biophys. Acta Gen. Subj. 1986, 881, 383–390. [Google Scholar] [CrossRef]
- European Commission. Commission implementing Regulation (EU) No 1060/2013 of 29 October 2013 concerning the authorisation of bentonite as a feed additive for all animal species. Off. J. Eur. Union 2013, L289, 33–37. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:289:0033:0037:EN:PDF (accessed on 15 December 2020).
- Dillon, G.P.; Yiannikouris, A.; Moran, C.A. Toxicological evaluation of a glycan preparation from an enzymatic hydrolysis of Saccharomyces cerevisiae. Food Chem. Tox. 2021. under peer review. [Google Scholar]
- Freundlich, H. Über die Adsorption in Lösungen [On adsorption in solutions]. Z. Phys. Chem. 1907, 57, 385–471. [Google Scholar]
Adsorbent | pH | Kf | n | R2 |
---|---|---|---|---|
HSCAS | 3.0 | 5.01 | 1.51 | 0.9891 |
YCW | 3.0 | 5.47 | 2.66 | 0.9404 |
AC | 3.0 | 108.42 | 2.29 | 0.6396 |
HSCAS | 7.0 | 1.54 | 1.13 | 0.9712 |
YCW | 7.0 | 1.37 | 1.38 | 0.8638 |
AC | 7.0 | 136.55 | 2.28 | - |
Initial AFB1 1 | pH | Bound AFB1 (%) (Mean ± Standard Error 2) | ||
---|---|---|---|---|
(µg/mL) | HSCAS | YCW | AC | |
10 | 3.0 | 77.92 ± 2.54 | 74.34 ± 1.38 | 100 ± 3.63 |
20 | 3.0 | 74.62 ± 0.39 | 62.02 ± 3.4 | 100 ± 0.26 |
30 | 3.0 | 72.05 ± 0.91 | 55.75 ± 3.62 | 99.82 ± 0.07 |
40 | 3.0 | 70.16 ± 1.57 | 47.25 ± 2.01 | 99.8 ± 0.67 |
50 | 3.0 | 67.16 ± 1.09 | 41.54 ± 2.65 | 99.73 ± 0.17 |
60 | 3.0 | 65.02 ± 0.75 | 38.9 ± 0.83 | 99.65 ± 0.9 |
Overall Mean 3 | 71.16 ± 4.57 c | 53.31 ± 12.87 b | 99.83 ± 0.13 a | |
10 | 7.0 | 52.16 ± 1.57 | 41.95 ± 0.73 | 100 ± 0.95 |
20 | 7.0 | 52.15 ± 1.85 | 34.39 ± 1.63 | 100 ± 1.72 |
30 | 7.0 | 53.18 ± 1.62 | 41.02 ± 1.53 | 99.87 ± 0.45 |
40 | 7.0 | 54.33 ± 1.11 | 36.43 ± 4.45 | 99.86 ± 0.6 |
50 | 7.0 | 51.94 ± 2.81 | 36.47 ± 0.77 | 99.79 ± 0.65 |
60 | 7.0 | 50.41 ± 1.61 | 31.74 ± 5.12 | 100.37 ± 2.05 |
Overall Mean 3 | 52.42 ± 1.78 c | 37.17 ± 4.43 b | 99.89 ± 0.1 a |
Tested Material 1 | Untreated | Mean Value ± Standard Error (µg/L) | Pepsin–HCl Treated (µg/L) | |
---|---|---|---|---|
Mean Value ± Standard Error (µg/L) | Reduction (%) | Reduction (%) | ||
Initial free AFB1 | 10.0 | 10.0 | ||
Feed alone | 7.25 ± 0.35 a | −27.5 | 5.14 ± 0.02 a | −48.6 |
+ YCW (0.1%) | 7.00 ± 0.25 a | −30.0 | 5.04 ± 0.04 a | −49.6 |
+ YCW (1%) | 5.81 ± 0.27 b | −41.9 | 4.01 ± 0.10 c | −59.9 |
+ YCW (5%) | 2.63 ± 0.16 c | −73.7 | 2.43 ± 0.07 d | −75.7 |
+ HSCAS (0.1%) | 6.62 ± 0.21 ab | −33.8 | 4.60 ± 0.13 b | −54.0 |
+ HSCAS (1%) | 2.55 ± 0.08 cd | −74.5 | 2.33 ± 0.18 d | −76.7 |
+ HSCAS (5%) | 1.43 ± 0.12 d | −85.7 | 1.54 ± 0.03 e | −84.6 |
Treatments | AFB1 (µmol/g Tissue ± Standard Error 1) | |||
---|---|---|---|---|
0 min | 1 min | 2 min | 4 min | |
Control | 0.0085 ± 0.0010 a | 0.0529 ± 0.0034 a | 0.0629 ± 0.0034 a | 0.0896 ± 0.0057 a |
HSCAS (0.1%) 2 | 0.0144 ± 0.0015 b | 0.1898 ± 0.0168 b | 0.2163 ± 0.0228 b | 0.2665 ± 0.0261 b |
YCW (0.1%) 2 | 0.0140 ±0.0015 b | 0.2098 ± 0.0315 b | 0.2205 ± 0.0388 b | 0.3124 ± 0.0455 b |
YCW (1.0%) 2 | 0.0134 ± 0.0016 ab | 0.1372 ± 0.0173 b | 0.1984 ± 0.0242 b | 0.2444 ± 0.0233 b |
Treatments | Coefficient | S.E. | t Stat | p-Value | |
---|---|---|---|---|---|
Control | Slope | 0.0124 | 0.0020 | 6.3260 | 7.6 × 10−7 |
Intercept | 0.0395 | 0.0052 | 7.624 | 2.6 × 10−8 | |
HSCAS (0.1%) 1 | Slope | 0.0255 | 0.0101 | 2.5267 | 1.7 × 10−2 |
Intercept | 0.1647 | 0.0267 | 6.1659 | 1.2 × 10−6 | |
YCW (0.1%) 1 | Slope | 0.0359 | 0.0178 | 2.0135 | 5.4 × 10−2 |
Intercept | 0.1638 | 0.0472 | 3.4744 | 1.7 × 10−3 | |
YCW (1.0%) 1 | Slope | 0.0339 | 0.0101 | 3.3712 | 2.2 × 10−3 |
Intercept | 0.1141 | 0.0266 | 4.2846 | 2.0 × 10−4 |
Treatments | Coefficient | p-Value | 95% Conf. Interval | ||
---|---|---|---|---|---|
Control | Slope | 2.39 | 0.00 | 1.98 | 2.80 |
Intercept | −24.61 | 0.12 | −55.88 | 6.66 | |
YCW (0.3%) 1 | Slope | 0.71 | 0.00 | 0.33 | 1.09 |
Intercept | 28.78 | 0.06 | −0.69 | 58.24 | |
HSCAS (0.3%) 1 | Slope | 0.20 | 0.07 | −0.01 | 0.41 |
Intercept | 40.89 | 0.00 | 24.35 | 57.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yiannikouris, A.; Apajalahti, J.; Kettunen, H.; Ojanperä, S.; Bell, A.N.W.; Keegan, J.D.; Moran, C.A. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins 2021, 13, 24. https://doi.org/10.3390/toxins13010024
Yiannikouris A, Apajalahti J, Kettunen H, Ojanperä S, Bell ANW, Keegan JD, Moran CA. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins. 2021; 13(1):24. https://doi.org/10.3390/toxins13010024
Chicago/Turabian StyleYiannikouris, Alexandros, Juha Apajalahti, Hannele Kettunen, Suvi Ojanperä, Andrew N. W. Bell, Jason D. Keegan, and Colm A. Moran. 2021. "Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology" Toxins 13, no. 1: 24. https://doi.org/10.3390/toxins13010024
APA StyleYiannikouris, A., Apajalahti, J., Kettunen, H., Ojanperä, S., Bell, A. N. W., Keegan, J. D., & Moran, C. A. (2021). Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins, 13(1), 24. https://doi.org/10.3390/toxins13010024