Next Article in Journal
Augmentation of Saporin-Based Immunotoxins for Human Leukaemia and Lymphoma Cells by Triterpenoid Saponins: The Modifying Effects of Small Molecule Pharmacological Agents
Next Article in Special Issue
Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host
Previous Article in Journal
Personalized Bilateral Upper Limb Essential Tremor Therapy with Botulinum Toxin Using Kinematics
Previous Article in Special Issue
Bioinformatics and Functional Assessment of Toxin-Antitoxin Systems in Staphylococcus aureus
Open AccessArticle

Sphingomyelin Depletion from Plasma Membranes of Human Airway Epithelial Cells Completely Abrogates the Deleterious Actions of S. aureus Alpha-Toxin

1
University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany
2
Department of Otorhinolaryngology, University Hospital, Münster, Germany and Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, D-17489 Greifswald, Germany
*
Author to whom correspondence should be addressed.
Toxins 2019, 11(2), 126; https://doi.org/10.3390/toxins11020126
Received: 21 December 2018 / Revised: 12 February 2019 / Accepted: 15 February 2019 / Published: 20 February 2019
(This article belongs to the Special Issue Staphylococcus aureus Toxins)
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin. View Full-Text
Keywords: sphingomyelin; airway epithelial cells; cell physiology; Staphylococcus aureus; alpha-toxin sphingomyelin; airway epithelial cells; cell physiology; Staphylococcus aureus; alpha-toxin
Show Figures

Figure 1

MDPI and ACS Style

Ziesemer, S.; Möller, N.; Nitsch, A.; Müller, C.; Beule, A.G.; Hildebrandt, J.-P. Sphingomyelin Depletion from Plasma Membranes of Human Airway Epithelial Cells Completely Abrogates the Deleterious Actions of S. aureus Alpha-Toxin. Toxins 2019, 11, 126.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop