Next Article in Journal
Channel Formation by LktA of Mannheimia (Pasteurella) haemolytica in Lipid Bilayer Membranes and Comparison of Channel Properties with Other RTX-Cytolysins
Previous Article in Journal
Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay
Open AccessArticle

Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor

Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
*
Authors to whom correspondence should be addressed.
Toxins 2019, 11(10), 603; https://doi.org/10.3390/toxins11100603
Received: 16 September 2019 / Revised: 30 September 2019 / Accepted: 8 October 2019 / Published: 16 October 2019
α-Conotoxins (α-CTxs) are small disulfide-rich peptides from venom of Conus species that target nicotinic acetylcholine receptors (nAChRs). The muscle-type nAChRs have been recognized as a potential target for several diseases, such as myogenic disorders, muscle dystrophies, and myasthenia gravis. EI, an α4/7-CTx, mainly blocks α1β1δε nAChRs and has an extra N-terminal extension of three amino acids. In this study, the alanine scanning (Ala-scan) mutagenesis was applied in order to identify key residues of EI for binding with mouse α1β1δε nAChR. The Ala-substituted analogues were tested for their abilities of modulating muscle and neuronal nAChRs in Xenopus laevis oocytes using two-electrode voltage clamp (TEVC) recordings. Electrophysiological results indicated that the vital residues for functional activity of EI were His-7, Pro-8, Met-12, and Pro-15. These changes exhibited a significant decrease in potency of EI against mouse α1β1δε nAChR. Interestingly, replacing the critical serine (Ser) at position 13 with an alanine (Ala) residue resulted in a 2-fold increase in potency at the α1β1δε nAChR, and showed loss of activity on α3β2 and α3β4 nAChRs. Selectivity and potency of [S13A] EI was improved compared with wild-type EI (WT EI). In addition, the structure–activity relationship (SAR) of EI revealed that the “Arg1–Asn2–Hyp3” residues at the N-terminus conferred potency at the muscle-type nAChRs, and the deletion analogue △1–3 EI caused a total loss of activity at the α1β1δε nAChR. Circular dichroism (CD) spectroscopy studies demonstrated that activity loss of truncated analogue △1–3 EI for α1β1δε nAChR is attributed to disturbance of the secondary structure. In this report, an Ala-scan mutagenesis strategy is presented to identify crucial residues that are significantly affecting potency of E1 for mouse α1β1δε nAChR. It may also be important in remodeling of some novel ligands for inhibiting muscle-type nAChRs. View Full-Text
Keywords: Muscle-type nAChR; α-CTx EI; Ala-scan mutagenesis; TEVC; CD spectroscopy Muscle-type nAChR; α-CTx EI; Ala-scan mutagenesis; TEVC; CD spectroscopy
Show Figures

Figure 1

MDPI and ACS Style

Ning, J.; Ren, J.; Xiong, Y.; Wu, Y.; Zhangsun, M.; Zhangsun, D.; Zhu, X.; Luo, S. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins 2019, 11, 603.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop